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Abstract

We illustrate the general concept of what we describe as elemental graphics: displays that
afford direct visualizations of data with respect to fundamental questions that drive particular
statistical methods. Attention is directed to methods that have both descriptive and inferential
features through a focus on what can be seen as elemental graphics for analysis of variance.
Our graphics are partly pedagogical in nature, highlighting the fundamental comparisons and
outcomes made in the conduct of an ANOVA; however, their use readily extends well beyond
pedagogy. These graphics can be helpful in the analysis of nearly any data set for which the
corresponding method is applicable. The graphics were created using our graphical ANOVA
R package granova.1

1 Introduction

To be most informative in practice, statistical methods should help users see relationships, hy-
pothesized or discovered, among sets of variates or between groups with respect to one or more
variates. Particular methods are usually defined using specific models, or by relational questions.
Some procedures pose explicit questions that can be approached both descriptively and through

1This paper grew out of notes prepared for a talk given by R. Pruzek at the 2008 meeting of the Society of
Multivariate Experimental Psychology in Montreal, Ontario, Canada.
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inference. We provide examples and discussion of what we describe as elemental graphics for a
variety of methods supported by the R package granova.

An elemental graphic facilitates direct visualization of data in a way that illuminates the ques-
tions that a particular statistical method seeks to answer. For example, a simple scatterplot may be
considered the canonical example of an elemental graphic for the association of two variables, and
by incorporating superposition of a regression line, especially if augmented with vertical lines (from
the points to the regression line) that show ‘errors’, such a plot can become an elemental graphic for
a linear prediction. Here we consider elemental graphics for analysis of variance (ANOVA) methods.

It is interesting to note that despite being on the scene for more than three quarters of a century,
analysis of variance continues to be central to many applied statistical sciences, and some modern
statisticians continue to advocate for use of ANOVA methodology (Gelman [3]). In this paper we
examine four classes of ANOVA methods. We provide examples of elemental graphics for each
of the following methods or models: one and two-way ANOVA; contrast-based analyses of group
differences and dependent (or paired) sample comparisons. We make use of four functions in our
R [10] package granova [8] (for graphical ANOVA); just as for all R functions, granova is freely
available and documented in R.

A key feature of elemental graphics is that beyond their obvious value in displaying data their use
generally provides details showing how data points and related summaries play out in the context of
specific questions that drive particular analytic methods. Frequently, either virtues and limitations
of particular methods will be highlighted in some form by elemental graphics. When methods are
closely related (e.g., those based on ranking, and their parametric counterparts) it can, as we shall
demonstrate, be especially helpful to investigate the details about how such methods work when
used to analyze the “same” data.

For any particular statistical analysis of data, an elemental graphic will not be unique. A set
of elemental graphics for a particular combination of method and data are likely to differ at least
in details. Elemental graphics can differ in how they represent data with respect to questions
central to a method, and also particular features of given data. Tastes of the graphic-analyst, with
respect to the intended audience can also influence displays, such as when different colors, symbols
and/or line-types are used; more generally there are many ways to use ink on a page or on a screen.
Differences in details can make differences in appearance and in effectiveness discernible, perhaps
for specific audiences, or for data sets of various sizes and complexities. Furthermore, the tools,
or software itself, available to implement particular graphics will generally play a role in graphic
construction. A given static graphic depicting the criterion for the choice of regression line might
be different from one implemented via an interactive applet. For a wide variety of examples, some
of which may be described as elemental graphics with respect to particular statistical models, see
Graph Gallery; note especially the examples showing association plots and various lattice plots,
where all examples include the relevant R source code.

In general, elemental graphics can deepen one’s understanding of both data and methods, since
the same basic method can be passed over a variety of data sets, and different methods can be passed
over the same data. Variations on this theme can be particularly helpful for students. Put another
way, elemental graphics, when they are feasible, provide a means for users to see an analysis, such
as a one- or two-way ANOVA, using data for which they may have notable experience or interest.

Compared with conventional non-elemental graphics, those that seem not to have any direct
correspondence with particular (descriptive and inferential) questions that drive statistical methods,
elemental graphics can facilitate more useful or informative evaluations of methods, or data, in
relation to one another. This is chiefly because elemental graphics provide more incisive information
about how particular data points play out in analyses. There appear to us to be relatively few
extant statistical graphics that are reasonably described as elemental, so there may be numerous
opportunities for further development of elemental graphics. We have found it interesting to query
whether elemental graphics exist or have been developed for particular methods. But we recognize
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One-way ANOVA displaying 12 groups
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Figure 1: Inverse survival times for 12 treatments from Box, Hunter & Hunter [2]. Note that the
variances across groups are similar for this metric.

that especially for relatively complex methods of analysis, or high dimensional data, that it may be
difficult – at least with existing software – to construct elemental graphics.

2 A Graphic for One-way ANOVA

The (omnibus) F statistic at the heart of any inferential application of one-way ANOVA implies a
particular way to compare means, one relying on data-based contrasts. The elemental graphic we
have developed is based on this particular comparison of means. An example is shown in Figure 1,
where it seen that the elemental graphic is essentially a specialized scatterplot; this figure was
generated using the function granova.1w in R. The baseline (horizontal axis) is labeled in terms of
contrast coefficients cj for the J groups, ordered from smallest to largest, each of which is a group
mean minus the grand mean: cj = Mj −M , j = 1 . . . J . Scores yij and group means Mj for the
groups are printed on the vertical axis. In this case, J = 12 and all group sizes are the same,
n = 4. Symbols representing the group means (red triangles) necessarily fall on a straight line since
contrast coefficients and group means differ only by a constant. Score values yij for each group
are plotted with slight horizontal jittering in vertical columns aligned with the contrast coefficients.
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(For the functions granova.1w, granova.2w and granova.contr the amount of jittering can be
controlled by the user.) Numerical values for the individual group means Mj are shown on the right
side of the graphic, as are the full set of residuals (the aggregation of yij −Mj differences), using a
rug plot. The grand mean M and (nominal) range of all scores are shown on the left side; group
sizes nj are provided along the top of the plot, as are group identification symbols.

The mean square error within groups (MSW) and the mean square error between groups (MSB)
are readily visualized in terms of areas of squares. Both squares are centered on the grand mean
(large green dot). The blue square corresponds to the MSW. Its side is based on the standard
deviation of residuals (pooled within group mean deviations), shown in a rug plot at the right
margin. Given the statistic MSB (= SSB/(df-between)), where SSB = n

∑
(Mj −M)2 = n

∑
cjMj,

SSB can be viewed as a linear combination of the group means where the coefficients are the cj’s.
By taking its square root, the MSB determines the length of the side of the red square.2

In other words, this graphic depicts individual observations plotted in columns whose positions
are determined by the cj so that both within and between group variation can be visualized and
compared. Standard summary statistics are represented as the areas of the blue and red squares.
Finally the F statistic can be seen as the ratio of the area of the red to the blue square. In this
case MSB > MSW, so F > 1. The F-statistic is printed as a legend at the lower right. (If variation
between groups is sufficiently large in relation to within group variance, the red square may be too
large to appear in the plot.)

The graphic generated by granova.1w provides all basic information associated with a one-way
ANOVA; it accommodates any number of groups, which may be of varying sizes. (The analyst can
inspect the code to see how the computation is done.) In some cases, especially when there are
many groups, group means, and consequently some cj, may be either identical or nearly so. This
is true for groups 10 and 11 shown in Figure 1. In such cases it may be difficult to distinguish the
corresponding columns. When this happens one may wish to modify input data slightly by adding
or subtracting a small value from all scores in designated groups; this can improve the graphic and
generally results in only trivial changes in summary statistics.

2.1 Details for a Specific Example: Poison Data for 12 Unstructured
Groups

The data shown in Figure 1 were presented initially in Box and Cox [1], then discussed in detail
by Box, Hunter and Hunter [2], hereafter called BHH. The scores are survival times in units of 10
hours; the data are discussed by BHH using both a one-way and two-way ANOVAs. (These data
are reexamined again in the next section.) The data were collected for three poisons, each subject
to four treatments, in a balanced full-factorial design, with 4 replications for each cell. Central to an
understanding of these data is that survival times themselves are far less satisfactory for ANOVA
applications than the reciprocal of these times because as BHH make clear the assumption of con-
stant population variances that underpins use of the F-statistic (21.53) is far more reasonable after
this non-linear transformation.3 Finally, numeric output from the function provides the standard
one-way ANOVA table, a table with group statistics ordered according to the contrast coefficients
in the graphic, weighted and 20% trimmed means, and finally, variances and standard deviations.

If survival times (or reciprocals) are converted to ranks, we can proceed with a rank-based
version of one-way ANOVA, commonly described as non-parametric ANOVA. Figure 2 shows such
an analysis using the transformed version of ranks given in our poison data set. In this case scores

2For technical reasons, both squares have sides based on twice these standard deviations, so the areas of each
square are four times the corresponding MS’s; of course the multiplier has no effect on the ratio of these areas.

3The reader is encouraged to reanalyze these data which may be found in package granova, as the dataset poison;
advantages of using this version of the data include the fact that two alternative transformations of the initial survival
times, as well as contrast coefficients (see below) are provided.
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One-way ANOVA displaying 12 groups
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Figure 2: Inverse Survival Time Ranks for 12 treatments from Box, Hunter & Hunter [2]. Note
again that variances across groups are similar for this metric.

have been converted to ranks, and also rescaled to have the same median as the original data (i.e.,
1/SurvTimes), and a spread comparable to that of the original data. (Because this constitutes a
linear transformation of the ranks it has no effect on the rank-based test statistic, but by making
the metrics compatible, helps in the graphic to show similarities between the preceding analysis
and the one based on ranks.) The standard Kruskal-Wallis test is based on ranks; it asks whether
the mean ranks differ statistically across groups and it entails computing a χ2 statistic. For these
data, χ2 = 40.2, with a p-value of 3.32 ∗ 10−5. However, the graphic shows more. Note that the
ordering of the group means based on ranks conforms exactly to the order based on reciprocals of
survival times. This is because the highest scores have the lowest ranks, and vice versa – and since
the ranks have been linearly rescaled, the ordering holds. In this example there are no identifiable
outliers for the rank data, however that is in general possible even though most authors who discuss
rank-based ANOVA do not make this point.

The function granova.1w provides various summary statistics. We reproduce these and the
specific R command for each graphic in Appendix A 7.

In the following section we use the same data as given in BHH (see Table 8) for our illustration
of two-way ANOVA. While basic graphic information will be presented, the reader is advised to
consider use of the R software directly to generate the graphics because the key graphic is dynamic:
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it consists of a three-dimensional data display the position of which is controlled by the mouse.

3 A Graphic for Two-Way ANOVA

Moving to two-way ANOVA requires a reconceptualization, one that is informed by consideration
of contrasts as shown in Figure 1. In particular, account must be taken of structure imposed on
the groups. The two-way display is best seen with reference to a row by column table where means
Mjk appear in cells, and row and column means are made available, say, on the right and lower
margins respectively. Ideally, as in the case of our first example, the design will be balanced; in any
case the set of means for rows and columns can generally be used to generate contrast coefficients
(usually called row and column ‘effects’). The standard way to generate contrast coefficients cum
effects is to compute them by subtracting the grand mean from the row and column marginal means
respectively. For rows, cj. = Mj. −M ; for columns, c.k = M.k −M . The granova.2w function can
(in principle) accommodate any number of rows or columns.

The two-way ANOVA analog of the straight line that shows the locus of means for one-way
ANOVA is a flat surface, where grid-lines can be used to show how the cj. and c.k identify the
ordered (and properly spaced) rows and columns. In general, as in the one-way graphic, row and
column effects are ordered and a flat surface always follows from fitting additively. The degree of
‘tilt’ of the surface (most evident in the initial display) corresponds generally to the magnitude of the
corresponding effect. Initially, before one begins to rotate the graphic, factor labels are shown on the
lower axes; response values are shown on vertical axis. When used interactively, rotation generally
affords clear visualization of the data in all cells, whatever their sizes. Such dynamic graphics
connect directly to basic questions that underpin two-way ANOVA, as they facilitate visualization
of effects.

When cell sizes vary, and especially when the design is not balanced, effects generally take
the cell sizes into account. In the case of unbalanced data, however, many students of ANOVA
methodology hold differing opinions about how analyses should proceed. That is, different analysts
routinely advocate different models to analyze unbalanced data. For this reason, numerical results
produced by granova.2w may not satisfy some data analysts. It follows that the likelihood that the
granova.2w graphic will be judged as ‘satisfactory’ may depend on how close the row by column
dataset is to being balanced. Furthermore, individual groups need not be of equal sizes, and indeed
cell counts of zero are permitted.

3.1 Details for the Two-Way ANOVA Example: A 3×4 Structure with
4 replications per Group

Figure 3(a) exhibits a snapshot for inverse survival time data for a two-way ANOVA corresponding
to the preferred analysis, as discussed in BHH. Each of the twelve within-cell distributions is depicted
as a set of (blue) spheres, (initially) vertically stacked for individual row-column combinations. The
mean for each row-column combination corresponds to a white sphere. (Note that if the mean for
any group is close to one of the data points, then the mean depicted by the white sphere may be
masked or obscured.)

The flat surface seen in Figure 3(a) corresponds to the “fitted means” for an additive model
analysis. Tacitly, use of an additive model implies that cell means lie sufficiently close to the flat
surface, which means no evidence of interaction between the rows and columns. Indeed, the test
statistic for interaction in this example is not statistically different from zero. Each interaction
term (for any cell of such a two-way table) can be written as Mjk −Mj. −M.k + M . When the
deviations, shown by the difference between the cell means and the corresponding fitted values
(the algebraic sum of the trailing three terms in this expression) tend to be large, this is generally
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(a) Additive fitted model to survival rates (inverse survival
times).

(b) Quadratic fitted model to untransformed survival
times.

Figure 3: Screen capture of three dimensional plots with fitted models of the poison survival rates
and times from Box, Hunter & Hunter [2]. Note how the quadratic model differs from the additive
version; graphics are interactively zoomable and orientable.
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Figure 4: Screen capture of the smokers dataset with quadratic model fit.

taken as evidence of interaction between the row and column effects. This effect will show up as
deviations, possibly systematic, of the white spheres from the flat surface when an additive model
has been fit.

Figure 3(b) shows a graphic (snapshot) where the response is the untransformed survival times
with a quadratic fit superimposed; the curvature is strongly evident (compare to Figure 3(a)). That
is, Figure 3(b) shows the data in its original metric (SurvTime) and provides a surface based on a
quadratic model fit. The comparison of these two elemental graphics for the transformed and the
original response points up how much difference a non-linear transformation can make; particularly,
how much simplification can be lent to the analysis by such a transformation that homogenizes
group variances.

3.2 Details for a Second Two-Way ANOVA Example: A 3×5 Structure
with No Replications

Another example is shown here, using data from Hoaglin, Mosteller and Tukey (1991) [4] (HMT).
In this case the purpose was to describe the relationships among five income groups, for three
age groups and the percent of the population who smoke. There is only one response for each
Income/Age combination: the percent in the population who smoke. (The original source of the
data is the Health Interview Survey conducted by the National Center for Health Statistics between
1978 and 1980, as excerpted by HMT in chapter 6.) Note that lacking replications within cells
means that standard methods to test hypotheses about interaction do not work. However, the
graphic provides information that suggests interaction in this case; see Figure 3. As in the case
of the poison data, HMT, like BHH, examine and discuss these data more thoroughly than space
permitted here.

Figure 4 shows a quadratic fit to percentages who smoke for the HMT data (with no replications
within cells); note that this curved surface fits the data about as well as a simple model can. Indeed,
the quadratic fit is equivalent to using Tukey’s one-degree-of-freedom-for-non-additivity, as in the
case of the survival time analysis (see Figure 3(b)). This shows that in cases like this the graphic
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does more than permit the analyst to “see” the data, it carries a visual message of what it means
to fit Tukey’s one-degree-of-freedom-for-non-additivity model in a two-way ANOVA. For percent
data, non-linear transformations can, as seen in the analysis of the poisons data, help to simplify
analyses; for more details see chapter 13 of HMT [4].

Finally, we note that numerical results provided in this run of the granova.2w graphic are
wholly straightforward, and conform with those given by BHH. However, as noted above, for un-
balanced data, or datasets where there are no observations in some cells, numerical results given
by granova.2w may be inappropriate (at least by some standards). Our experience suggests that
when some cells are empty, it may be helpful to impute data for those cells and proceed, taking care
to see how the pseudo-values play out in the graphic as well as in the numerical analysis. Of course
strategies like this can be used for unbalanced data generally. Naturally, imputation can be done
in a variety of ways, so the analyst may want to compare graphics across different imputations.
There is a large literature on the analysis of unbalanced designs and imputation; for an especially
informative discussion of this issue, see Venables [11].

4 A Graphic for Comparing Groups Using Contrasts

Contrasts, or contrast vectors, show comparisons between groups, or linear functions of group
means; individual coefficients, negative versus positive, show exactly which groups are “contrasted
with” others. Our elemental graphic for this case has been developed for depicting how groups
of scores, not just group means, compare across the (non-zero) contrast coefficients with respect
to responses. The set of comparisons, one for each contrast vector, can be seen as constituting
an elemental graphic for the set of contrast vectors that the user has supplied. This function can
facilitate analyses of higher order fixed effects designs especially those with relatively few levels
for each factor; it can work for crossed or factorial designs as well as those that entail nesting, or
mixtures thereof.

The function granova.contr accommodates up to J − 1 contrasts for J groups (or “cells”). If
fewer than J − 1 contrasts are specified, then the number per group must be provided in the initial
call. For the current version of this function group sizes must be equal. Contrast vectors need
not be mutually orthogonal, however a number of virtues derive from mutual orthogonality. The
elemental graphic(s) generates as many panels as there are specified contrasts, with data values
jittered so as to reduce overlapping of points. (The amount of jittering can be controlled by the
user.)

In addition to the jittered points, each panel exhibits a straight line that connects response
means for that contrast as linearly combined for the negative (left) and positive (right) coefficients
in the corresponding contrast vector. Evidence of non-zero effects correspond to slopes of these
lines that depart notably from horizontal (slope = 0). Standardization of contrast vectors ensures
that negative coefficient means (generally linear combinations) are always compared with positive
coefficient means; this provides the generality to accommodate virtually any pre-specified contrasts,
and gives a framework for comparing standardized effect sizes over contrasts. A set of prescribed
contrasts defines any analysis. In general outliers and/or skewed distributions are readily displayed
in some or all of the panels.

In addition to the displays for individual contrasts, a numerical summary is provided with the
graphic showing the pattern of means across groups (in the order given). Numerical results can
help inform the user about ‘significance’ in the case of each panel using a regression approach to the
analysis, where the usual normal theory assumptions are (tacitly) invoked. Each contrast vector
is a predictor, and the set of these independent variables are used to predict the response. The
usual lines of the standard ANOVA or linear model summary table for contrast-based designs are
isomorphic with the panel displays.

9



-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

20
25

30

DrugA

A
ro

us
al

 S
co

re
s

Coefficients vs. Response, contrast DrugA

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

20
25

30

DrugB

A
ro

us
al

 S
co

re
s

Coefficients vs. Response, contrast DrugB

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

20
25

30

DrugA.B

A
ro

us
al

 S
co

re
s

Coefficients vs. Response, contrast DrugA.B

Group Indicator

A
ro

us
al

 S
co

re
s

1 2 3 4

20
25

30

Responses for all groups, each n= 10

Figure 5: Contrasts for Lowry Dataset [6]

4.1 Details for a Contrasts-based Analysis of Physiological Arousal
Data: A 2 × 2 Structure with Replications.

Figure 5 depicts an analysis based on three contrasts for a 2 × 2 design, where the contrast vectors
show how groups are compared in what has become a standard analysis. These kinds of contrasts
readily generalize to virtually any 2k factorial or 2k−m fractional factorial design, and are easily
implemented in R. Lowry [6] provides these data, which pertain to arousal levels in rats, and he
carries out all standard computations to help link our results with those that are standardly reported
for this ANOVA.

The first panel contrasts the two levels of Drug A; the second shows the effect of two levels of
Drug B on arousal; these correspond to so-called main effects. The blue dashed lines that compare
means suggest that both main effects are non-zero for both drugs. The numerical analysis reinforces
this interpretation as it yields t-statistics with magnitudes above 3 for both main effects; for each,
the standardized effect size exceeds unity (in magnitude). The third panel corresponds to a contrast
defined as the product of the first two (DrugA.B) and this suggests no interaction; indeed the t-
statistic is near zero as is the standardized effect size. Finally, the fourth panel does not concern
contrasts, but instead exhibits scores and means of all (four) treatment groups. The last panel
might be compared an output from a one-way treatment using granova.1w, although we do not
conduct that analysis.

4.2 Details for Contrasts for the Poison Data: Data Based Contrasts

The poisons data set, using inverse survival time responses, has been used for the illustrations in
Figure 6. The goal of this illustration is to show how a contrasts-based graphic might effectively
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Figure 6: Contrasts for poison data from Box, Hunter & Hunter [2].

be generated following a two-way ANOVA, at least for a balanced design. Note the caveats below,
however, as related to the numerical summary. Construction of the specific contrasts was based on
information provided in the output of the initial two-way ANOVA shown in Section 3. In particular,
given the ordering of the means for the row and column factors, and using just a simple “linear”
contrast for the row and column groups, these first two data-based contrast vectors show that nearly
all variance of the means for this 4 × 3 design can be summarized or accounted for using only two
contrasts based on mean ordering, one for each factor.

A third contrast is also shown, computed using individual products of the respective contrast
vectors, where the interaction effect which for the reciprocal survival time metric (same as sur-
vival rate) is notably smaller than that for the row and column contrasts. Had the experimenter
prespecified these two linear contrasts, for rows and columns respectively, then the analysis would
constitute a planned-comparison among groups, and the numerical (test statistic) results, and cor-
responding probabilities, would (ostensibly) have been meaningful. As it is, given that the initial
data analysis results were used to construct the contrast coefficients, the display shown in Figure 6
is nevertheless useful for summarization of variation among group means. The qualification holds
that probabilistic results (printed in Appendix A 7) for such a run are not meaningful since in
fact these contrasts were not planned. We have found that graphics like this based on contrasts
often show no discernible effects with respect to mean differences, but they may, as in the case of
right side of the southwest panel in Figure 6, show that groups associated with contrasts may have
point-sets that differ noticeably from one another in ways we might not have become aware of sans
graphics.
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Figure 7: Dependent sample assessment plot using schizophrenic behavior ratings from Stanley and
Walton [9], via Lehman [5]

5 Dependent Sample Assessment Plots

Next, we introduce an elemental graphic for analysis of two dependent samples. We call this a
Dependent sample assessment plot, where an example is shown in Figure 7.4. As discussed in
Pruzek and Helmreich (2009) [7], there are at least four distinctive ways to acquire dependent
sample data, two of which entail repeated measures for units or individuals, and two of which entail
either blocking or matching to define pairs. In all cases, X and Y scores are used to generate
difference scores D that are the usual focus of an analysis. The graphic we present shows all scores,
X, Y , and D, and how they relate to one another. Note that the central question that usually
drives a dependent sample analysis concerns the average difference score, and especially how much
that differs from zero. Typically, the use of graphics in the dependent sample case, if used at all, is
to check parametric assumptions about difference scores; we shall demonstrate some advantages of
adding graphical results for such data.

5.1 Details for a Repeated Measures Problem: Examining Effects of a
Placebo Using Difference Scores

The graphic shown in Figure 7 focuses on a scatterplot of two dependent samples (paired (X, Y )
values), here for a sample of size n = 12. Each pair of scores corresponds to before and after

4A more detailed examination of the dependent sample paradigm, especially via the elemental graphic presented
here, is presented in Pruzek & Helmreich[7]
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behavior ratings of the same person diagnosed as a chronic schizophrenic. In this case, Y values
show ratings before taking a ‘placebo’ as if it were a drug, X values depict ratings six weeks
after treatment. Data are from an Stanley and Walton [9]; note that this example is discussed by
Lehmann [5]. For each (X, Y ) point, one can see three projections: one to the ‘north’ forming a
rug plot showing the X score distribution, another to the ‘east’ showing the distribution via rug
tufts for Y scores; and finally to the ‘southwest’ where projections are shown by thin dotted lines to
crosses on a line segment at the lower-left. The (narrow, red) dashed vertical and horizontal lines
(that intersect with the heavier diagonal (dashed red) line) correspond to the means for the X and
Y (marginal) distributions respectively. The 12 crosses depict a (version of a) stripchart of the D’s,
where each D = X − Y , i.e., the distribution of difference scores. The mean of the distribution of
difference scores (crosses) corresponds to the heavy dashed (red) line that is parallel to the identity
line (showing X = Y ); the green line segment below the difference score crosses shows a standard
95% confidence interval, which in this case is rather short and does not span zero. We have included
(optional) reference labels for each individual to assist the discussion.

While a standard analysis focuses on the difference scores and either a t-statistic or a confidence
interval, considerably more information is readily seen in the graphic. We distinguish two groups of
subjects in Figure 7: A = (8, 11, 12, 1, 5, 6) and B = (2, 3, 4, 7, 9, 10). The six subjects in group A
showed almost no change after treatment (all points fall near or on the Y = X line). The B group
differs from A, since it is for these individuals that the strongest placebo effects appear. In fact, the
summary significance shown by the t-statistic of 3.21 rests almost entirely on effects for group B,
since the effects for individuals in group A are near zero. Although such a post-hoc interpretation
risks over-interpretation of data, it seems likely that the investigator who is concerned about placebo
effects would want to know more about how subjects in group B might differ from those in A since
the B persons seemed more susceptible to placebo effects. Such questions are representative of the
kind of post-hoc queries that might be of interest to the applied researcher, and they are far more
readily brought to light when using this type of graphics-approach to analysis than would be the
case for an exclusively numerical analysis.

5.2 Details for a Randomized Block Dataset: Hypothetical Data Com-
paring Pairs of Diabetics

An extensive search of more than three dozen textbooks and several articles turned up no useful
examples of what we deem to be a particularly promising approach to experimental design and anal-
ysis. In particular, as will be illustrated using hypothetical data, we have strong reason to believe
that relatively few researchers recognize the potential of randomized block designs for increasing
design efficiency when comparing treatments. (We have also come to believe that these designs
are generally not effectively taught in most statistics textbooks.) However simple, our example
illustrates the key points.

Suppose we aim to compare two treatments (that could be two diets, drugs or exercise regimens,
etc.). We begin using simulated data for a sample of 30 diabetics. We shall refer to the two groups
as ‘Treatment’ and ‘Control’, respectively. Suppose further before we began the treatments, we
obtained A1c measures of blood glucose, this being a standard measure that reflects a blood glucose
levels over the most recent 3 months. Given these pre-experimental A1c values, we rank all persons,
and then form blocks of size two: the two highest scores have been assigned to block 1, the next
pair to block 2, until all 30 persons are assigned to 15 blocks. For randomized blocks the next step
is to randomly allocate individuals within blocks to the ‘Treatment’ or ‘Control’ groups.

Over a period of several months the experiment will be assumed to have been carefully run
(possibly using double blind methodology) after which A1c measures will again be obtained for all
individuals. The hypothetical A1c values we use for analysis represent a realistic range of values,
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Figure 8: Dependent sample assessment plot of simulated A1c scores for 15 randomized blocks of
diabetic patients.

as plotted in Figure 8, using function granova.ds. As in the case of the preceding example each
data point corresponds to a row in the original data set, but in this case these rows correspond to
pairs (blocks) of individuals for the ‘Treatment’ and ‘Control’ groups respectively. In this case the
Treatment A1c scores are notably lower than their Control counterparts, which suggests a desirable
effect of the treatment. Indeed, as shown by the 95 percent CI (green line segment, lower left),
these data are inconsistent with the hypothesis of equal mean A1c scores for the two putative
populations. Since A1c scores generally correlate quite highly with one another over time periods
of several months, and blocking was based on initial A1c scores, this design has controlled one of
the key individual differences for participants in this experiment. This general approach, based on
standard blocking methodology, can increase – perhaps quite substantially – the likelihood of finding
statistically reliable effects. The method can also be helpful in identifying interactions between
treatments and individual difference variables. Generally speaking the stronger the correlation
between the initial ranking variable and the ultimate response (putting aside treatment effects), the
greater the improvement in design efficiency as compared with independent sample designs that do
not employ blocking.

Treatment effects can often be demonstrated using such a design, even for small samples, when-
ever an effective means can be found for ranking individuals before blocking. In this case, the
positive correlation (.62) between scores in the ‘Treatment’ and ‘Control’ columns reflects the de-
pendency introduced by blocking. Pruzek and Helmreich (2009) discuss various other possibilities
in some detail, including the case where dependent sample assessment plots can be employed to
advantage in the analysis of observational data.
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Note further that when an elemental graphic such as that in Figure 8 is used to display data
for a dependent sample analysis, the analyst is provided with a variety of visual information to
help understand such data. A little reflection makes clear that attention need not be restricted to
inference based on (somewhat arbitrary) summary statistics; and indeed, description of data may
turn out to be at least as interesting or useful as inference. In this case, the graphic shows that 3 of
the 15 pairs exhibit effects contrary to the mean difference between Treatment and Control groups.
At least two possible interpretations seem relevant in such situations: one is that outcome measures –
such as the A1c scores – may not be wholly reliable. It is common for outcome measures to vary more
or less randomly over time. Second, there may be reason to suspect that scores vary systematically
with respect to grouping variables. (It is known that A1c scores tend to differ systematically
by ethnicity.) That is, covariate differences may be associated with individual differences within
or between blocks. In general, graphics may show clusters, outliers, or trends across blocks. In
general, many such visually identified ‘irregularities’ may be seen as evidence of interactions between
treatments and covariates, interactions that are unlikely to have been identified when analyses do
not go beyond numerical summaries. The function granova.ds permits use of labels for points
that can facilitate explorations of such possibilities. Finally, note that marginal distributions for
the variate can be informative (shown as rug plots in Figure 8), as can the shape of the distribution
of difference scores (which is often assumed to be normal in the parent population).

6 Concluding Remarks

Although it has become standard practice to include graphics for many statistical analyses, par-
ticularly those based on regression and ANOVA, with few exceptions such graphics tend not to be
strongly connected or closely linked to corresponding numerical analyses. By introducing elemental
graphics, we aim to strengthen the connection between the questions that drive particular meth-
ods of analysis and graphics for displaying data. Experience suggests that this step often helps
to understand the applicability of chosen methods for particular data sets, and also to aid better
understanding of methods generally. Of course it can also help the analyst understand extant data.
While we have concentrated on graphics for various ANOVA methods because we have focused
on documenting a certain package in R, it is clear that elemental graphics have been or could be
developed for many other methods. Graphics produced using the assoc function in the vcd package
in R provide good examples of the possibilities. While elemental graphics may have special value
for pedagogic uses, they can be broadly useful in many situations where one aims to learn just how
particular data points play out in the context of particular methods of analysis.

We have concentrated on the four functions: granova.1w, granova.2w, granova.contr and
granova.ds, which are available in the R package granova. In the foregoing, we have tried to
illustrate principal aspects of each elemental graphic, but the reader should recognize that far more
insight derives from hands-on experiences of using such graphical methods with one’s own data,
where the particulars of context and applicability may become central.

A broader challenge is to encourage more focused and deeper thinking about strengths and
weaknesses of data analytic methods, perhaps especially in the light of graphic display methods
for wide varieties of data. In our experience, pedagogical value often leads to practical value in
wide ranges of situations. As the estimable John Tukey so often emphasized, applied science is best
served when methods are used in the service of understanding data, not as ends in themselves.

15



7 Appendix A: Command and Numeric Output from Func-

tions

7.1 Command and Numeric Output Figure 1:

R> granova.1w(poison$RateSurvTime, poison$Group,

ylab = "Inverse of Survival Time or Survival Rate",

resid = TRUE, top.dot = .15, kx = 1.4, px = 1.4)

$grandsum

Grandmean df.bet df.with MS.bet MS.with F.stat F.prob SS.bet/SS.tot

2.62 11.00 36.00 5.17 0.24 21.53 0.00 0.87

7.2 Command and Numeric Output Figure 2:

R> granova.1w(poison$RankRateSurvTime, poison$Group,

ylab = "Inverse of Survival Time or Survival Rate",

resid = TRUE, top.dot = .15, kx = 1.4, px = 1.4)

$grandsum

Grandmean df.bet df.with MS.bet MS.with F.stat F.prob SS.bet/SS.tot

2.49 11.00 36.00 3.70 0.19 19.18 0.00 0.85

7.3 Command and Numeric Output Figure 3(a):

R> granova.2w(poison[, c(4, 2, 1)])

[1] SurvTime ~ Treatment * Poison

$Treatment.effects

A C D B

-0.1650 -0.0869 0.0548 0.1970

$Poison.effects

III II I

-0.203 0.065 0.138

$CellCounts.Reordered

Poison

Treatment III II I

A 4 4 4

C 4 4 4

D 4 4 4

B 4 4 4

$CellMeans.Reordered

Poison

Treatment III II I

A 0.210 0.320 0.412

C 0.235 0.375 0.568

D 0.325 0.668 0.610

B 0.335 0.815 0.880
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$aov.summary

Df Sum Sq Mean Sq F value Pr(>F)

Treatment 3 0.92121 0.30707 13.8056 3.777e-06 ***

Poison 2 1.03301 0.51651 23.2217 3.331e-07 ***

Treatment:Poison 6 0.25014 0.04169 1.8743 0.1123

Residuals 36 0.80072 0.02224

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

7.4 Command and Numeric Output Figure 3(b):

R> granova.2w(poison[, c(4, 2, 1)], fit = "quadratic")

[1] SurvTime ~ Treatment * Poison

$Treatment.effects

A C D B

-0.1650 -0.0869 0.0548 0.1970

$Poison.effects

III II I

-0.203 0.065 0.138

$CellCounts.Reordered

Poison

Treatment III II I

A 4 4 4

C 4 4 4

D 4 4 4

B 4 4 4

$CellMeans.Reordered

Poison

Treatment III II I

A 0.210 0.320 0.412

C 0.235 0.375 0.568

D 0.325 0.668 0.610

B 0.335 0.815 0.880

$aov.summary

Df Sum Sq Mean Sq F value Pr(>F)

Treatment 3 0.92121 0.30707 13.8056 3.777e-06 ***

Poison 2 1.03301 0.51651 23.2217 3.331e-07 ***

Treatment:Poison 6 0.25014 0.04169 1.8743 0.1123

Residuals 36 0.80072 0.02224

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

7.5 Command and Numeric Output Figure 4:

R> granova.2w(smokers, fit = ’quadratic’)

[1] percent ~ income * age

$income.effects

E:>25000 D:15000-24999 C:10000-14999 A:<5000 B:5000-9999
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-3.73 -2.07 1.27 1.60 2.93

$age.effects

65+ 17-30 31-65

-13.70 5.27 8.47

$CellCounts.Reordered

age

income 65+ 17-30 31-65

E:>25000 1 1 1

D:15000-24999 1 1 1

C:10000-14999 1 1 1

A:<5000 1 1 1

B:5000-9999 1 1 1

$CellMeans.Reordered

age

income 65+ 17-30 31-65

E:>25000 17 28 33

D:15000-24999 15 32 36

C:10000-14999 18 36 39

A:<5000 14 38 42

B:5000-9999 16 41 41

$aov.summary

Df Sum Sq Mean Sq

income 4 92.93 23.23

age 2 1440.13 720.07

income:age 8 75.87 9.48

7.6 Command and Numeric Output Figure 5:

R> granova.contr(arousal, contrasts = contrasts22, ylab = "Arousal Scores",

xlab = names(contrasts22))

$summary.lm

Call:

lm(formula = resp ~ contrst)

Residuals:

Min 1Q Median 3Q Max

-5.910 -2.015 -0.075 1.885 6.290

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.0825 0.4657 51.712 < 2e-16 ***

contrst1 3.4650 0.9314 3.720 0.000676 ***

contrst2 3.9150 0.9314 4.203 0.000166 ***

contrst3 0.0750 0.9314 0.081 0.936267

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.945 on 36 degrees of freedom
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Multiple R-squared: 0.4668,Adjusted R-squared: 0.4223

F-statistic: 10.5 on 3 and 36 DF, p-value: 4.173e-05

$means.pos.neg.coeff

neg pos diff stEftSze

Drug.A 22.35 25.82 3.46 1.18

Drug.B 22.12 26.04 3.91 1.33

Drug.A.B 24.05 24.12 0.07 0.03

$contrasts

Drug.A Drug.B Drug.A.B

[1,] -0.5 -0.5 0.5

[2,] -0.5 0.5 -0.5

[3,] 0.5 -0.5 -0.5

[4,] 0.5 0.5 0.5

$group.means.sds

[,1] [,2] [,3] [,4]

Means 20.43 24.27 23.82 27.81

S.D.s 2.41 2.81 2.74 3.67

7.7 Command and Numeric Output Figure 6:

R> con.poison

contr.Poison contr.Treatment contr.Product

[1,] -1 3 -3

[2,] 0 3 0

[3,] 1 3 3

[4,] -1 -3 3

[5,] 0 -3 0

[6,] 1 -3 -3

[7,] -1 1 -1

[8,] 0 1 0

[9,] 1 1 1

[10,] -1 -1 1

[11,] 0 -1 0

[12,] 1 -1 -1

R> granova.contr(poison$RateSurvTime, con = con.poison)

$summary.lm

Call:

lm(formula = resp ~ contrst)

Residuals:

Min 1Q Median 3Q Max

-1.34972 -0.28122 0.02386 0.30390 0.91469

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.62238 0.07891 33.231 < 2e-16 ***

contrst1 4.02505 0.38971 10.328 2.44e-13 ***
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contrst2 3.47925 0.42621 8.163 2.35e-10 ***

contrst3 0.46785 0.34522 1.355 0.182

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.5467 on 44 degrees of freedom

Multiple R-squared: 0.7992,Adjusted R-squared: 0.7855

F-statistic: 58.38 on 3 and 44 DF, p-value: 2.21e-15

$means.pos.neg.coeff

neg pos diff stEftSze

contr.Poison 1.80 3.80 2.00 4.07

contr.Treatment 2.01 3.23 1.22 2.49

contr.Product 2.62 2.98 0.36 0.74

$contrasts

contr.Poison contr.Treatment contr.Product

[1,] -0.25 0.250 -0.375

[2,] 0.00 0.250 0.000

[3,] 0.25 0.250 0.375

[4,] -0.25 -0.250 0.375

[5,] 0.00 -0.250 0.000

[6,] 0.25 -0.250 -0.375

[7,] -0.25 0.083 -0.125

[8,] 0.00 0.083 0.000

[9,] 0.25 0.083 0.125

[10,] -0.25 -0.083 0.125

[11,] 0.00 -0.083 0.000

[12,] 0.25 -0.083 -0.125

$group.means.sds

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

Means 2.49 3.27 4.80 1.16 1.39 3.03 1.86 2.71 4.26 1.69 1.7 3.09

S.D.s 0.50 0.82 0.53 0.20 0.55 0.42 0.49 0.42 0.23 0.36 0.7 0.24

7.8 Command and Numeric Output Figure 7:

R> granova.ds(schiz, rev = TRUE, ident = TRUE, main = "Dependent Sample Graphic

for Schizophrenic Behavior Ratings, n = 12")

Summary Stats

n 12.000

mean(x) 2.534

mean(y) 2.142

mean(D=x-y) 0.392

SD(D) 0.424

ES(D) 0.926

r(x,y) 0.817

r(x+y,d) 0.604

LL 95\%CI 0.123

UL 95\%CI 0.662

t(D-bar) 3.208
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df.t 11.000

pval.t 0.008

7.9 Command and Numeric Output Figure 8:

R> granova.ds(a1c, revc = TRUE, main = "Dependent Sample Plot of n=15

Pairs of Hypothetical A1c Scores")

Summary Stats

n 15.000

mean(x) 9.108

mean(y) 8.140

mean(D=x-y) 0.968

SD(D) 0.971

ES(D) 0.997

r(x,y) 0.622

r(x+y,d) -0.114

LL 95\%CI 0.430

UL 95\%CI 1.506

t(D-bar) 3.862

df.t 14.000

pval.t 0.002
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8 Appendix B: Tables

percent income age
1 38.00 A:<5000 17-30
2 41.00 B:5000-9999 17-30
3 36.00 C:10000-14999 17-30
4 32.00 D:15000-24999 17-30
5 28.00 E:>25000 17-30
6 42.00 A:<5000 31-65
7 41.00 B:5000-9999 31-65
8 39.00 C:10000-14999 31-65
9 36.00 D:15000-24999 31-65

10 33.00 E:>25000 31-65
11 14.00 A:<5000 65+
12 16.00 B:5000-9999 65+
13 18.00 C:10000-14999 65+
14 15.00 D:15000-24999 65+
15 17.00 E:>25000 65+

Table 1: The smokers dataset from HMT [4]

Before Treatment Six Weeks After Treatment
1 2.40 2.54
2 2.20 3.18
3 2.10 2.54
4 2.90 3.27
5 2.20 2.09
6 2.30 2.45
7 2.40 3.09
8 1.50 1.45
9 2.70 3.45

10 1.90 3.09
11 1.80 1.81
12 1.30 1.45

Table 2: The schizophrenia dataset; measures of schizophrenic behavior before and six weeks after
treatment with a placebo. From an article by Stanley and Walton [9], obtained via Lehmann [5].
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Row Poison Treat Grp SrvT RtSrvT RkRtSrvT c.Pois c.Tr c.Prd
1 I A 1 0.31 3.23 3.19 -1 3 -3
2 I A 1 0.45 2.22 2.10 -1 3 -3
3 I A 1 0.46 2.17 1.96 -1 3 -3
4 I A 1 0.43 2.33 2.32 -1 3 -3
5 II A 2 0.36 2.78 2.82 0 3 0
6 II A 2 0.29 3.45 3.47 0 3 0
7 II A 2 0.40 2.50 2.46 0 3 0
8 II A 2 0.23 4.35 3.84 0 3 0
9 III A 3 0.22 4.55 3.98 1 3 3

10 III A 3 0.21 4.76 4.12 1 3 3
11 III A 3 0.18 5.56 4.20 1 3 3
12 III A 3 0.23 4.35 3.84 1 3 3
13 I B 4 0.82 1.22 1.16 -1 -3 3
14 I B 4 1.10 0.91 0.88 -1 -3 3
15 I B 4 0.88 1.14 1.09 -1 -3 3
16 I B 4 0.72 1.39 1.31 -1 -3 3
17 II B 5 0.92 1.09 1.02 0 -3 0
18 II B 5 0.61 1.64 1.74 0 -3 0
19 II B 5 0.49 2.04 1.89 0 -3 0
20 II B 5 1.24 0.81 0.80 0 -3 0
21 III B 6 0.30 3.33 3.33 1 -3 -3
22 III B 6 0.37 2.70 2.75 1 -3 -3
23 III B 6 0.38 2.63 2.61 1 -3 -3
24 III B 6 0.29 3.45 3.47 1 -3 -3
25 I C 7 0.43 2.33 2.32 -1 1 -1
26 I C 7 0.45 2.22 2.10 -1 1 -1
27 I C 7 0.63 1.59 1.60 -1 1 -1
28 I C 7 0.76 1.32 1.24 -1 1 -1
29 II C 8 0.44 2.27 2.25 0 1 0
30 II C 8 0.35 2.86 2.97 0 1 0
31 II C 8 0.31 3.23 3.19 0 1 0
32 II C 8 0.40 2.50 2.46 0 1 0
33 III C 9 0.23 4.35 3.84 1 1 1
34 III C 9 0.25 4.00 3.62 1 1 1
35 III C 9 0.24 4.17 3.69 1 1 1
36 III C 9 0.22 4.55 3.98 1 1 1
37 I D 10 0.45 2.22 2.10 -1 -1 1
38 I D 10 0.71 1.41 1.38 -1 -1 1
39 I D 10 0.66 1.52 1.53 -1 -1 1
40 I D 10 0.62 1.61 1.67 -1 -1 1
41 II D 11 0.56 1.79 1.81 0 -1 0
42 II D 11 1.02 0.98 0.95 0 -1 0
43 II D 11 0.71 1.41 1.38 0 -1 0
44 II D 11 0.38 2.63 2.61 0 -1 0
45 III D 12 0.30 3.33 3.33 1 -1 -1
46 III D 12 0.36 2.78 2.82 1 -1 -1
47 III D 12 0.31 3.23 3.19 1 -1 -1
48 III D 12 0.33 3.03 3.04 1 -1 -1

Table 3: The poison dataset from BHH [2]. The columns are respectively: Row - case number;
Poison - type of poison; Treat - treatment method; Grp - group numbers; SrvT: survival time;
RtSrvT: survival time rate; that is the inverse of SrvT; RkRtSrvT: ranked rate of survial; c.Pois:
poison contrast; c.Tr: treatment contrast; c.Prd: the product of c.Pois and c.Tr for interactions.
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Arousal FactorA FactorB
1 20.40 1 1
2 20.00 1 1
3 24.50 1 1
4 19.70 1 1
5 17.30 1 1
6 17.40 1 1
7 18.40 1 1
8 21.00 1 1
9 22.30 1 1

10 23.30 1 1
11 22.40 1 2
12 22.40 1 2
13 26.20 1 2
14 28.80 1 2
15 26.30 1 2
16 19.10 1 2
17 25.40 1 2
18 25.10 1 2
19 21.80 1 2
20 25.20 1 2
21 20.50 2 1
22 26.60 2 1
23 25.40 2 1
24 22.60 2 1
25 22.50 2 1
26 26.30 2 1
27 19.80 2 1
28 28.20 2 1
29 23.70 2 1
30 22.60 2 1
31 34.10 2 2
32 32.60 2 2
33 29.00 2 2
34 29.00 2 2
35 25.70 2 2
36 21.90 2 2
37 28.50 2 2
38 25.80 2 2
39 27.10 2 2
40 24.40 2 2

Table 4: Data from Lowry [6]; pertain to arousal levels in rats.
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Treatment Control
1 7.14 8.63
2 8.15 9.58
3 8.07 7.82
4 7.62 8.25
5 7.55 9.84
6 6.73 7.87
7 8.17 7.21
8 8.85 9.31
9 9.04 9.88

10 8.81 9.47
11 9.51 11.03
12 10.63 10.20
13 6.45 8.79
14 8.73 10.20
15 6.65 8.54

Table 5: Simulated A1c scores for 15 randomized blocks of diabetic patients.
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