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Preface

Openlntro Statistics covers a first course in statistics, providing a rigorous introduction to applied
statistics that is clear, concise, and accessible. This book was written with the undergraduate level
in mind, but it’s also popular in high schools and graduate courses.

We hope readers will take away three ideas from this book in addition to forming a foundation
of statistical thinking and methods.
e Statistics is an applied field with a wide range of practical applications.
e You don’t have to be a math guru to learn from real, interesting data.

e Data are messy, and statistical tools are imperfect. But, when you understand the strengths
and weaknesses of these tools, you can use them to learn about the world.

Textbook overview

The chapters of this book are as follows:

Introduction to data. Data structures, variables, and basic data collection techniques.
Summarizing data. Data summaries, graphics, and a teaser of inference using randomization.
Probability. Basic principles of probability.

Distributions of random variables. The normal model and other key distributions.

Sk o ® e

Foundations for inference. General ideas for statistical inference in the context of estimating
the population proportion.

6. Inference for categorical data. Inference for proportions and tables using the normal and
chi-square distributions.

7. Inference for numerical data. Inference for one or two sample means using the ¢-distribution,
statistical power for comparing two groups, and also comparisons of many means using ANOVA.

8. Introduction to linear regression. Regression for a numerical outcome with one predictor
variable. Most of this chapter could be covered after Chapter 1.

©

. Multiple and logistic regression. Regression for numerical and categorical data using many
predictors.

Openlntro Statistics supports flexibility in choosing and ordering topics. If the main goal is to reach
multiple regression (Chapter 9) as quickly as possible, then the following are the ideal prerequisites:

e Chapter 1, Sections 2.1, and Section 2.2 for a solid introduction to data structures and statis-
tical summaries that are used throughout the book.

Section 4.1 for a solid understanding of the normal distribution.

e Chapter 5 to establish the core set of inference tools.

Section 7.1 to give a foundation for the t-distribution

Chapter 8 for establishing ideas and principles for single predictor regression.
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Examples and exercises

Examples are provided to establish an understanding of how to apply methods

EXAMPLE 0.1

This is an example. When a question is asked here, where can the answer be found?

The answer can be found here, in the solution section of the example!

When we think the reader should be ready to try determining the solution to an example, we frame
it as Guided Practice.

GUIDED PRACTICE 0.2

The reader may check or learn the answer to any Guided Practice problem by reviewing the full
solution in a footnote.'

Exercises are also provided at the end of each section as well as review exercises at the end of each
chapter. Solutions are given for odd-numbered exercises in Appendix A.

Additional resources

Video overviews, slides, statistical software labs, data sets used in the textbook, and much more are
readily available at

openintro.org/os

We also have improved the ability to access data in this book through the addition of Appendix B,
which provides additional information for each of the data sets used in the main text and is new in the
Fourth Edition. Online guides to each of these data sets are also provided at openintro.org/data
and through a companion R package.

We appreciate all feedback as well as reports of any typos through the website. A short-link to
report a new typo or review known typos is openintro.org/os/typos.

For those focused on statistics at the high school level, consider Advanced High School Statistics,
which is a version of OpenlIntro Statistics that has been heavily customized by Leah Dorazio for high
school courses and AP® Statistics.

Acknowledgements

This project would not be possible without the passion and dedication of many more people beyond
those on the author list. The authors would like to thank the Openlntro Staff for their involvement
and ongoing contributions. We are also very grateful to the hundreds of students and instructors
who have provided us with valuable feedback since we first started posting book content in 2009.

We also want to thank the many teachers who helped review this edition, including Laura Acion,
Matthew E. Aiello-Lammens, Jonathan Akin, Stacey C. Behrensmeyer, Juan Gomez, Jo Hardin,
Nicholas Horton, Danish Khan, Peter H.M. Klaren, Jesse Mostipak, Jon C. New, Mario Orsi, Steve
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1Guided Practice problems are intended to stretch your thinking, and you can check yourself by reviewing the
footnote solution for any Guided Practice.


http://www.openintro.org/redirect.php?go=os&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=data&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=textbook-github_openintro&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=os_typos&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=textbook-books&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=people&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=textbook-openintro_about&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=matthew_e_aiello-lammens&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=jonathan_akin&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=nicholas_horton&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=danish_khan&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=peter_hm_klaren&referrer=os4_pdf

Chapter 1

Introduction to data

1.1 Case study: using stents to prevent strokes
1.2 Data basics
1.3 Sampling principles and strategies

1.4 Experiments



Scientists seek to answer questions using rigorous methods and careful
observations. These observations — collected from the likes of field
notes, surveys, and experiments — form the backbone of a statistical
investigation and are called data. Statistics is the study of how best
to collect, analyze, and draw conclusions from data, and in this first
chapter, we focus on both the properties of data and on the collection

of data.

Qo
D+

For videos, slides, and other resources, please visit

www.openintro.org/os
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1.1. CASE STUDY: USING STENTS TO PREVENT STROKES

1.1 Case study: using stents to prevent strokes

Section 1.1 introduces a classic challenge in statistics: evaluating the efficacy of a medical
treatment. Terms in this section, and indeed much of this chapter, will all be revisited later in the
text. The plan for now is simply to get a sense of the role statistics can play in practice.

In this section we will consider an experiment that studies effectiveness of stents in treating
patients at risk of stroke. Stents are devices put inside blood vessels that assist in patient recovery
after cardiac events and reduce the risk of an additional heart attack or death. Many doctors have
hoped that there would be similar benefits for patients at risk of stroke. We start by writing the
principal question the researchers hope to answer:

Does the use of stents reduce the risk of stroke?

The researchers who asked this question conducted an experiment with 451 at-risk patients.
Each volunteer patient was randomly assigned to one of two groups:

Treatment group. Patients in the treatment group received a stent and medical manage-
ment. The medical management included medications, management of risk factors, and help
in lifestyle modification.

Control group. Patients in the control group received the same medical management as the
treatment group, but they did not receive stents.

Researchers randomly assigned 224 patients to the treatment group and 227 to the control group.
In this study, the control group provides a reference point against which we can measure the medical
impact of stents in the treatment group.

Researchers studied the effect of stents at two time points: 30 days after enrollment and 365 days
after enrollment. The results of 5 patients are summarized in Figure 1.1. Patient outcomes are
recorded as “stroke” or “no event”, representing whether or not the patient had a stroke at the end
of a time period.

Patient group 0-30 days 0-365 days

1 treatment no event no event
2 treatment stroke stroke

3 treatment no event no event
450 control no event no event
451 control no event no event

Figure 1.1: Results for five patients from the stent study.

Considering data from each patient individually would be a long, cumbersome path towards
answering the original research question. Instead, performing a statistical data analysis allows us to
consider all of the data at once. Figure 1.2 summarizes the raw data in a more helpful way. In this
table, we can quickly see what happened over the entire study. For instance, to identify the number
of patients in the treatment group who had a stroke within 30 days, we look on the left-side of the
table at the intersection of the treatment and stroke: 33.

0-30 days 0-365 days

stroke no event stroke no event
treatment 33 191 45 179
control 13 214 28 199
Total 46 405 73 378

Figure 1.2: Descriptive statistics for the stent study.
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GUIDED PRACTICE 1.1

Of the 224 patients in the treatment group, 45 had a stroke by the end of the first year. Using these
two numbers, compute the proportion of patients in the treatment group who had a stroke by the
end of their first year. (Please note: answers to all Guided Practice exercises are provided using
footnotes. )’

We can compute summary statistics from the table. A summary statistic is a single number
summarizing a large amount of data. For instance, the primary results of the study after 1 year
could be described by two summary statistics: the proportion of people who had a stroke in the
treatment and control groups.

Proportion who had a stroke in the treatment (stent) group: 45/224 = 0.20 = 20%.
Proportion who had a stroke in the control group: 28/227 = 0.12 = 12%.

These two summary statistics are useful in looking for differences in the groups, and we are in for
a surprise: an additional 8% of patients in the treatment group had a stroke! This is important
for two reasons. First, it is contrary to what doctors expected, which was that stents would reduce
the rate of strokes. Second, it leads to a statistical question: do the data show a “real” difference
between the groups?

This second question is subtle. Suppose you flip a coin 100 times. While the chance a coin
lands heads in any given coin flip is 50%, we probably won’t observe exactly 50 heads. This type of
fluctuation is part of almost any type of data generating process. It is possible that the 8% difference
in the stent study is due to this natural variation. However, the larger the difference we observe (for
a particular sample size), the less believable it is that the difference is due to chance. So what we
are really asking is the following: is the difference so large that we should reject the notion that it
was due to chance?

While we don’t yet have our statistical tools to fully address this question on our own, we can
comprehend the conclusions of the published analysis: there was compelling evidence of harm by
stents in this study of stroke patients.

Be careful: Do not generalize the results of this study to all patients and all stents. This
study looked at patients with very specific characteristics who volunteered to be a part of this study
and who may not be representative of all stroke patients. In addition, there are many types of stents
and this study only considered the self-expanding Wingspan stent (Boston Scientific). However, this
study does leave us with an important lesson: we should keep our eyes open for surprises.

IThe proportion of the 224 patients who had a stroke within 365 days: 45/224 = 0.20.



1.1. CASE STUDY: USING STENTS TO PREVENT STROKES

Exercises

1.1 Migraine and acupuncture, Part |. A migraine is a particularly painful type of headache, which patients
sometimes wish to treat with acupuncture. To determine whether acupuncture relieves migraine pain,
researchers conducted a randomized controlled study where 89 females diagnosed with migraine headaches
were randomly assigned to one of two groups: treatment or control. 43 patients in the treatment group
received acupuncture that is specifically designed to treat migraines. 46 patients in the control group
received placebo acupuncture (needle insertion at non-acupoint locations). 24 hours after patients received
acupuncture, they were asked if they were pain free. Results are summarized in the contingency table below.”

Pain free Figure from the original pa-

Yes No Total
Treatment 10 33 43
Control 2 44 46
Total 12 7 89

per displaying the appropri-

ate area (M) versus the in-

Group appropriate area (S) used in

the treatment of migraine at-
tacks.

L)

) What percent of patients in the treatment group were pain free 24 hours after receiving acupuncture?

) What percent were pain free in the control group?

(¢) In which group did a higher percent of patients become pain free 24 hours after receiving acupuncture?
) Your findings so far might suggest that acupuncture is an effective treatment for migraines for all people

who suffer from migraines. However this is not the only possible conclusion that can be drawn based

on your findings so far. What is one other possible explanation for the observed difference between the

percentages of patients that are pain free 24 hours after receiving acupuncture in the two groups?

1.2 Sinusitis and antibiotics, Part |. Researchers studying the effect of antibiotic treatment for acute
sinusitis compared to symptomatic treatments randomly assigned 166 adults diagnosed with acute sinusitis to
one of two groups: treatment or control. Study participants received either a 10-day course of amoxicillin (an
antibiotic) or a placebo similar in appearance and taste. The placebo consisted of symptomatic treatments
such as acetaminophen, nasal decongestants, etc. At the end of the 10-day period, patients were asked if
they experienced improvement in symptoms. The distribution of responses is summarized below.”

Self-reported tmprovement
n symptoms

Yes No Total
Group Treatment 66 19 85
Control 65 16 81
Total 131 35 166

a) What percent of patients in the treatment group experienced improvement in symptoms?

(a)
(b) What percent experienced improvement in symptoms in the control group?

(¢) In which group did a higher percentage of patients experience improvement in symptoms?

(d) Your findings so far might suggest a real difference in effectiveness of antibiotic and placebo treatments
for improving symptoms of sinusitis. However, this is not the only possible conclusion that can be drawn
based on your findings so far. What is one other possible explanation for the observed difference between
the percentages of patients in the antibiotic and placebo treatment groups that experience improvement
in symptoms of sinusitis?

2@. Allais et al. “Ear acupuncture in the treatment of migraine attacks: a randomized trial on the efficacy of
appropriate versus inappropriate acupoints”. In: Neurological Sci. 32.1 (2011), pp. 173-175.

3J.M. Garbutt et al. “Amoxicillin for Acute Rhinosinusitis: A Randomized Controlled Trial”. In: JAMA: The
Journal of the American Medical Association 307.7 (2012), pp. 685-692.
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1.2 Data basics

Effective organization and description of data is a first step in most analyses. This section
introduces the data matriz for organizing data as well as some terminology about different forms of
data that will be used throughout this book.

1.2.1 Observations, variables, and data matrices

Figure 1.3 displays rows 1, 2, 3, and 50 of a data set for 50 randomly sampled loans offered
through Lending Club, which is a peer-to-peer lending company. These observations will be referred
to as the loan50 data set.

Each row in the table represents a single loan. The formal name for a row is a case or
observational unit. The columns represent characteristics, called variables, for each of the loans.
For example, the first row represents a loan of $7,500 with an interest rate of 7.34%, where the
borrower is based in Maryland (MD) and has an income of $70,000.

GUIDED PRACTICE 1.2

What is the grade of the first loan in Figure 1.37 And what is the home ownership status of the
borrower for that first loan? For these Guided Practice questions, you can check your answer in the
footnote."

In practice, it is especially important to ask clarifying questions to ensure important aspects of
the data are understood. For instance, it is always important to be sure we know what each variable
means and the units of measurement. Descriptions of the 1loan50 variables are given in Figure 1.4.

loan_amount interest_rate term grade state total_income homeownership

1 7500 7.34 36 A MD 70000 rent

2 25000 9.43 60 B OH 254000 mortgage
3 14500 6.08 36 A MO 80000 mortgage
50 3000 7.96 36 A CA 34000 rent

Figure 1.3: Four rows from the 1loan50 data matrix.

variable description

loan_amount Amount of the loan received, in US dollars.

interest_rate Interest rate on the loan, in an annual percentage.

term The length of the loan, which is always set as a whole number of months.

grade Loan grade, which takes a values A through G and represents the quality
of the loan and its likelihood of being repaid.

state US state where the borrower resides.

total_income Borrower’s total income, including any second income, in US dollars.

homeownership Indicates whether the person owns, owns but has a mortgage, or rents.

Figure 1.4: Variables and their descriptions for the loan50 data set.

The data in Figure 1.3 represent a data matrix, which is a convenient and common way to
organize data, especially if collecting data in a spreadsheet. Each row of a data matrix corresponds
to a unique case (observational unit), and each column corresponds to a variable.

4The loan’s grade is A, and the borrower rents their residence.
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When recording data, use a data matrix unless you have a very good reason to use a different
structure. This structure allows new cases to be added as rows or new variables as new columns.

GUIDED PRACTICE 1.3

The grades for assignments, quizzes, and exams in a course are often recorded in a gradebook that
takes the form of a data matrix. How might you organize grade data using a data matrix?°

GUIDED PRACTICE 1.4

We consider data for 3,142 counties in the United States, which includes each county’s name, the
state where it resides, its population in 2017, how its population changed from 2010 to 2017, poverty
rate, and six additional characteristics. How might these data be organized in a data matrix?°

The data described in Guided Practice 1.4 represents the county data set, which is shown as
a data matrix in Figure 1.5. The variables are summarized in Figure 1.6.

5There are multiple strategies that can be followed. One common strategy is to have each student represented by
a row, and then add a column for each assignment, quiz, or exam. Under this setup, it is easy to review a single line
to understand a student’s grade history. There should also be columns to include student information, such as one
column to list student names.

SEach county may be viewed as a case, and there are eleven pieces of information recorded for each case. A table
with 3,142 rows and 11 columns could hold these data, where each row represents a county and each column represents
a particular piece of information.
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1.2. DATA BASICS

1.2.2 Types of variables

Examine the unemp_rate, pop, state, and median_edu variables in the county data set. Each
of these variables is inherently different from the other three, yet some share certain characteristics.

First consider unemp_rate, which is said to be a numerical variable since it can take a wide
range of numerical values, and it is sensible to add, subtract, or take averages with those values. On
the other hand, we would not classify a variable reporting telephone area codes as numerical since
the average, sum, and difference of area codes doesn’t have any clear meaning.

The pop variable is also numerical, although it seems to be a little different than unemp_rate.
This variable of the population count can only take whole non-negative numbers (0, 1, 2, ...). For this
reason, the population variable is said to be discrete since it can only take numerical values with
jumps. On the other hand, the unemployment rate variable is said to be continuous.

The variable state can take up to 51 values after accounting for Washington, DC: AL, AX, ...,
and WY. Because the responses themselves are categories, state is called a categorical variable, and
the possible values are called the variable’s levels.

Finally, consider the median_edu variable, which describes the median education level of county
residents and takes values below_hs, hs_diploma, some_college, or bachelors in each county. This
variable seems to be a hybrid: it is a categorical variable but the levels have a natural ordering.
A variable with these properties is called an ordinal variable, while a regular categorical variable
without this type of special ordering is called a nominal variable. To simplify analyses, any ordinal
variable in this book will be treated as a nominal (unordered) categorical variable.

e N
\ N

ordinal
(ordered categorical)

nominal
(unordered categorical)

|continu0us| | discrete |

Figure 1.7: Breakdown of variables into their respective types.

EXAMPLE 1.5

Data were collected about students in a statistics course. Three variables were recorded for each
student: number of siblings, student height, and whether the student had previously taken a statistics
course. Classify each of the variables as continuous numerical, discrete numerical, or categorical.

The number of siblings and student height represent numerical variables. Because the number of
siblings is a count, it is discrete. Height varies continuously, so it is a continuous numerical variable.
The last variable classifies students into two categories — those who have and those who have not
taken a statistics course — which makes this variable categorical.

GUIDED PRACTICE 1.6

An experiment is evaluating the effectiveness of a new drug in treating migraines. A group variable
is used to indicate the experiment group for each patient: treatment or control. The num_migraines
variable represents the number of migraines the patient experienced during a 3-month period.
Classify each variable as either numerical or categorical?’

"There group variable can take just one of two group names, making it categorical. The num_migraines variable
describes a count of the number of migraines, which is an outcome where basic arithmetic is sensible, which means this
is numerical outcome; more specifically, since it represents a count, num_migraines is a discrete numerical variable.

15
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1.2.3 Relationships between variables

Many analyses are motivated by a researcher looking for a relationship between two or more
variables. A social scientist may like to answer some of the following questions:

(1) If homeownership is lower than the national average in one county, will the percent of multi-unit
structures in that county tend to be above or below the national average?

(2) Does a higher than average increase in county population tend to correspond to counties with
higher or lower median household incomes?

(3) How useful a predictor is median education level for the median household income for US
counties?

To answer these questions, data must be collected, such as the county data set shown in
Figure 1.5. Examining summary statistics could provide insights for each of the three questions
about counties. Additionally, graphs can be used to visually exploring the data.

Scatterplots are one type of graph used to study the relationship between two numerical vari-
ables. Figure 1.8 compares the variables homeownership and multi_unit, which is the percent of
units in multi-unit structures (e.g. apartments, condos). Each point on the plot represents a single
county. For instance, the highlighted dot corresponds to County 413 in the county data set: Chat-
tahoochee County, Georgia, which has 39.4% of units in multi-unit structures and a homeownership
rate of 31.3%. The scatterplot suggests a relationship between the two variables: counties with
a higher rate of multi-units tend to have lower homeownership rates. We might brainstorm as to
why this relationship exists and investigate each idea to determine which are the most reasonable
explanations.
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Figure 1.8: A scatterplot of homeownership versus the percent of units that are
in multi-unit structures for US counties. The highlighted dot represents Chatta-
hoochee County, Georgia, which has a multi-unit rate of 39.4% and a homeowner-
ship rate of 31.3%.

The multi-unit and homeownership rates are said to be associated because the plot shows a
discernible pattern. When two variables show some connection with one another, they are called
associated variables. Associated variables can also be called dependent variables and vice-versa.
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Figure 1.9: A scatterplot showing pop_change against median_hh_income. Owsley
County of Kentucky, is highlighted, which lost 3.63% of its population from 2010
to 2017 and had median household income of $22,736.

GUIDED PRACTICE 1.7

Examine the variables in the 1loan50 data set, which are described in Figure 1.4 on page 12. Create
two questions about possible relationships between variables in 1oan50 that are of interest to you.®

EXAMPLE 1.8

This example examines the relationship between a county’s population change from 2010 to 2017
and median household income, which is visualized as a scatterplot in Figure 1.9. Are these variables
associated?

The larger the median household income for a county, the higher the population growth observed
for the county. While this trend isn’t true for every county, the trend in the plot is evident. Since
there is some relationship between the variables, they are associated.

Because there is a downward trend in Figure 1.8 — counties with more units in multi-unit
structures are associated with lower homeownership — these variables are said to be negatively
associated. A positive association is shown in the relationship between the median _hh_income
and pop_change in Figure 1.9, where counties with higher median household income tend to have
higher rates of population growth.

If two variables are not associated, then they are said to be independent. That is, two
variables are independent if there is no evident relationship between the two.

ASSOCIATED OR INDEPENDENT, NOT BOTH

A pair of variables are either related in some way (associated) or not (independent). No pair of
variables is both associated and independent.

8Two example questions: (1) What is the relationship between loan amount and total income? (2) If someone’s
income is above the average, will their interest rate tend to be above or below the average?
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1.2.4 Explanatory and response variables

When we ask questions about the relationship between two variables, we sometimes also want
to determine if the change in one variable causes a change in the other. Consider the following
rephrasing of an earlier question about the county data set:

If there is an increase in the median household income in a county, does this drive an
increase in its population?

In this question, we are asking whether one variable affects another. If this is our underlying
belief, then median household income is the explanatory variable and the population change is the
response variable in the hypothesized relationship.’

EXPLANATORY AND RESPONSE VARIABLES

When we suspect one variable might causally affect another, we label the first variable the
explanatory variable and the second the response variable.

explanatory might affect response
variable variable

For many pairs of variables, there is no hypothesized relationship, and these labels would not
be applied to either variable in such cases.

Bear in mind that the act of labeling the variables in this way does nothing to guarantee that
a causal relationship exists. A formal evaluation to check whether one variable causes a change in
another requires an experiment.

1.2.5 Introducing observational studies and experiments

There are two primary types of data collection: observational studies and experiments.

Researchers perform an observational study when they collect data in a way that does not
directly interfere with how the data arise. For instance, researchers may collect information via
surveys, review medical or company records, or follow a cohort of many similar individuals to form
hypotheses about why certain diseases might develop. In each of these situations, researchers merely
observe the data that arise. In general, observational studies can provide evidence of a naturally
occurring association between variables, but they cannot by themselves show a causal connection.

When researchers want to investigate the possibility of a causal connection, they conduct an
experiment. Usually there will be both an explanatory and a response variable. For instance, we
may suspect administering a drug will reduce mortality in heart attack patients over the following
year. To check if there really is a causal connection between the explanatory variable and the
response, researchers will collect a sample of individuals and split them into groups. The individuals
in each group are assigned a treatment. When individuals are randomly assigned to a group, the
experiment is called a randomized experiment. For example, each heart attack patient in the
drug trial could be randomly assigned, perhaps by flipping a coin, into one of two groups: the
first group receives a placebo (fake treatment) and the second group receives the drug. See the
case study in Section 1.1 for another example of an experiment, though that study did not employ
a placebo.

ASSOCIATION # CAUSATION

In general, association does not imply causation, and causation can only be inferred from a
randomized experiment.

9Sometimes the explanatory variable is called the independent variable and the response variable is called the
dependent variable. However, this becomes confusing since a pair of variables might be independent or dependent,
so we avoid this language.
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Exercises

1.3 Air pollution and birth outcomes, study components. Researchers collected data to examine the
relationship between air pollutants and preterm births in Southern California. During the study air pollution
levels were measured by air quality monitoring stations. Specifically, levels of carbon monoxide were recorded
in parts per million, nitrogen dioxide and ozone in parts per hundred million, and coarse particulate matter
(PM1o) in pg/m®. Length of gestation data were collected on 143,196 births between the years 1989 and
1993, and air pollution exposure during gestation was calculated for each birth. The analysis suggested that
increased ambient PMio and, to a lesser degree, CO concentrations may be associated with the occurrence
of preterm births.'’

(a) Identify the main research question of the study.
(b) Who are the subjects in this study, and how many are included?

(¢) What are the variables in the study? Identify each variable as numerical or categorical. If numerical,
state whether the variable is discrete or continuous. If categorical, state whether the variable is ordinal.

1.4 Buteyko method, study components. The Buteyko method is a shallow breathing technique devel-
oped by Konstantin Buteyko, a Russian doctor, in 1952. Anecdotal evidence suggests that the Buteyko
method can reduce asthma symptoms and improve quality of life. In a scientific study to determine the
effectiveness of this method, researchers recruited 600 asthma patients aged 18-69 who relied on medication
for asthma treatment. These patients were randomnly split into two research groups: one practiced the
Buteyko method and the other did not. Patients were scored on quality of life, activity, asthma symptoms,
and medication reduction on a scale from 0 to 10. On average, the participants in the Buteyko group
experienced a significant reduction in asthma symptoms and an improvement in quality of life."’

(a) Identify the main research question of the study.
(b) Who are the subjects in this study, and how many are included?

(c) What are the variables in the study? Identify each variable as numerical or categorical. If numerical,
state whether the variable is discrete or continuous. If categorical, state whether the variable is ordinal.

1.5 Cheaters, study components. Researchers studying the relationship between honesty, age and self-
control conducted an experiment on 160 children between the ages of 5 and 15. Participants reported their
age, sex, and whether they were an only child or not. The researchers asked each child to toss a fair coin
in private and to record the outcome (white or black) on a paper sheet, and said they would only reward
children who report white.'”

(a) Identify the main research question of the study.
(b) Who are the subjects in this study, and how many are included?

(¢) The study’s findings can be summarized as follows: ”Half the students were explicitly told not to cheat
and the others were not given any explicit instructions. In the no instruction group probability of
cheating was found to be uniform across groups based on child’s characteristics. In the group that was
explicitly told to not cheat, girls were less likely to cheat, and while rate of cheating didn’t vary by age
for boys, it decreased with age for girls.” How many variables were recorded for each subject in the
study in order to conclude these findings? State the variables and their types.

10B. Ritz et al. “Effect of air pollution on preterm birth among children born in Southern California between 1989
and 1993”. In: Epidemiology 11.5 (2000), pp. 502-511.

11J. McGowan. “Health Education: Does the Buteyko Institute Method make a difference?” In: Thoraz 58 (2003).

12 Alessandro Bucciol and Marco Piovesan. “Luck or cheating? A field experiment on honesty with children”. In:
Journal of Economic Psychology 32.1 (2011), pp. 73-78.
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1.6 Stealers, study components. In a study of the relationship between socio-economic class and unethical
behavior, 129 University of California undergraduates at Berkeley were asked to identify themselves as
having low or high social-class by comparing themselves to others with the most (least) money, most (least)
education, and most (least) respected jobs. They were also presented with a jar of individually wrapped
candies and informed that the candies were for children in a nearby laboratory, but that they could take
some if they wanted. After completing some unrelated tasks, participants reported the number of candies
they had taken.'”

(a) Identify the main research question of the study.

(b) Who are the subjects in this study, and how many are included?

(¢) The study found that students who were identified as upper-class took more candy than others. How
many variables were recorded for each subject in the study in order to conclude these findings? State
the variables and their types.

1.7 Migraine and acupuncture, Part |l. Exercise 1.1 introduced a study exploring whether acupuncture
had any effect on migraines. Researchers conducted a randomized controlled study where patients were
randomly assigned to one of two groups: treatment or control. The patients in the treatment group re-
ceived acupuncture that was specifically designed to treat migraines. The patients in the control group
received placebo acupuncture (needle insertion at non-acupoint locations). 24 hours after patients received
acupuncture, they were asked if they were pain free. What are the explanatory and response variables in
this study?

1.8 Sinusitis and antibiotics, Part Il. Exercise 1.2 introduced a study exploring the effect of antibiotic
treatment for acute sinusitis. Study participants either received either a 10-day course of an antibiotic
(treatment) or a placebo similar in appearance and taste (control). At the end of the 10-day period, patients
were asked if they experienced improvement in symptoms. What are the explanatory and response variables
in this study?

1.9 Fisher’s irises. Sir Ronald Aylmer Fisher was an English statistician, evolutionary biologist, and
geneticist who worked on a data set that contained sepal length and width, and petal length and width from
three species of iris flowers (setosa, versicolor and virginica). There were 50 flowers from each species in the
data set.'”

(a) How many cases were included in the data?

(b) How many numerical variables are included in
the data? Indicate what they are, and if they
are continuous or discrete.

Photo by Ryan Claussen
(http://flic.kr/p/6QTcuX)
(¢) How many categorical variables are included in CC BY-SA 2.0 license
the data, and what are they? List the corre-

sponding levels (categories).

1.10 Smoking habits of UK residents. A survey was conducted to study the smoking habits of UK
residents. Below is a data matrix displaying a portion of the data collected in this survey. Note that “.£”
stands for British Pounds Sterling, “cig” stands for cigarettes, and “N/A” refers to a missing component of
the data.'’

sex age marital grossIncome smoke  amtWeekends amt Weekdays
1 Female 42 Single Under £2,600 Yes 12 cig/day 12 cig/day
2 Male 44 Single £10,400 to £15,600 No N/A N/A
3 Male 53 Married Above £36,400 Yes 6 cig/day 6 cig/day
1691 Male 40 Single £2,600 to £5,200 Yes 8 cig/day 8 cig/day

(a) What does each row of the data matrix represent?
(b) How many participants were included in the survey?

(c) Indicate whether each variable in the study is numerical or categorical. If numerical, identify as contin-
uous or discrete. If categorical, indicate if the variable is ordinal.

13p.K. Piff et al. “Higher social class predicts increased unethical behavior”. In: Proceedings of the National
Academy of Sciences (2012).

1R.A Fisher. “The Use of Multiple Measurements in Taxonomic Problems”. In: Annals of Eugenics 7 (1936),
pp. 179-188.

15National STEM Centre, Large Datasets from statsdschools.
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1.11 US Airports. The visualization below shows the geographical distribution of airports in the contiguous
United States and Washington, DC. This visualization was constructed based on a dataset where each
observation is an airport.'®
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(a) List the variables used in creating this visualization.

(b) Indicate whether each variable in the study is numerical or categorical. If numerical, identify as contin-
uous or discrete. If categorical, indicate if the variable is ordinal.

1.12 UN Votes. The visualization below shows voting patterns the United States, Canada, and Mexico in
the United Nations General Assembly on a variety of issues. Specifically, for a given year between 1946 and
2015, it displays the percentage of roll calls in which the country voted yes for each issue. This visualization
was constructed based on a dataset where each observation is a country/year pair.'”
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(a) List the variables used in creating this visualization.

(b) Indicate whether each variable in the study is numerical or categorical. If numerical, identify as contin-
uous or discrete. If categorical, indicate if the variable is ordinal.

16Federal Aviation Administration, www.faa.gov/airports/airport_safety/airportdata_5010.
1"David Robinson. unvotes: United Nations General Assembly Voting Data. R package version 0.2.0. 2017. URL:
https://CRAN.R-project.org/package=unvotes.
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1.3 Sampling principles and strategies

The first step in conducting research is to identify topics or questions that are to be investigated.
A clearly laid out research question is helpful in identifying what subjects or cases should be studied
and what variables are important. It is also important to consider how data are collected so that
they are reliable and help achieve the research goals.

1.3.1 Populations and samples

Consider the following three research questions:

1. What is the average mercury content in swordfish in the Atlantic Ocean?
2. Over the last 5 years, what is the average time to complete a degree for Duke undergrads?

3. Does a new drug reduce the number of deaths in patients with severe heart disease?

Each research question refers to a target population. In the first question, the target population is
all swordfish in the Atlantic ocean, and each fish represents a case. Often times, it is too expensive
to collect data for every case in a population. Instead, a sample is taken. A sample represents
a subset of the cases and is often a small fraction of the population. For instance, 60 swordfish
(or some other number) in the population might be selected, and this sample data may be used to
provide an estimate of the population average and answer the research question.

GUIDED PRACTICE 1.9

For the second and third questions above, identify the target population and what represents an
individual case.'®

1.3.2 Anecdotal evidence

Consider the following possible responses to the three research questions:

1. A man on the news got mercury poisoning from eating swordfish, so the average mercury
concentration in swordfish must be dangerously high.

2. I met two students who took more than 7 years to graduate from Duke, so it must take longer
to graduate at Duke than at many other colleges.

3. My friend’s dad had a heart attack and died after they gave him a new heart disease drug,
so the drug must not work.

Each conclusion is based on data. However, there are two problems. First, the data only represent
one or two cases. Second, and more importantly, it is unclear whether these cases are actually
representative of the population. Data collected in this haphazard fashion are called anecdotal
evidence.

ANECDOTAL EVIDENCE

Be careful of data collected in a haphazard fashion. Such evidence may be true and verifiable,
but it may only represent extraordinary cases.

18(2) The first question is only relevant to students who complete their degree; the average cannot be computed
using a student who never finished her degree. Thus, only Duke undergrads who graduated in the last five years
represent cases in the population under consideration. Each such student is an individual case. (3) A person with
severe heart disease represents a case. The population includes all people with severe heart disease.
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Figure 1.10: In February 2010, some media pundits
cited one large snow storm as valid evidence against
global warming. As comedian Jon Stewart pointed
out, “It’s one storm, in one region, of one country.”

Anecdotal evidence typically is composed of unusual cases that we recall based on their striking
characteristics. For instance, we are more likely to remember the two people we met who took 7 years
to graduate than the six others who graduated in four years. Instead of looking at the most unusual
cases, we should examine a sample of many cases that represent the population.

1.3.3 Sampling from a population

We might try to estimate the time to graduation for Duke undergraduates in the last 5 years
by collecting a sample of students. All graduates in the last 5 years represent the population, and
graduates who are selected for review are collectively called the sample. In general, we always seek to
randomly select a sample from a population. The most basic type of random selection is equivalent
to how raffles are conducted. For example, in selecting graduates, we could write each graduate’s
name on a raffle ticket and draw 100 tickets. The selected names would represent a random sample
of 100 graduates. We pick samples randomly to reduce the chance we introduce biases.

all graduates

Figure 1.11: In this graphic, five graduates are randomly selected from the popu-
lation to be included in the sample.

EXAMPLE 1.10

Suppose we ask a student who happens to be majoring in nutrition to select several graduates for
the study. What kind of students do you think she might collect? Do you think her sample would
be representative of all graduates?

Perhaps she would pick a disproportionate number of graduates from health-related fields. Or per-
haps her selection would be a good representation of the population. When selecting samples by
hand, we run the risk of picking a biased sample, even if their bias isn’t intended.
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all graduates

graduatéys from
health-related fields

Figure 1.12: Asked to pick a sample of graduates, a nutrition major might inad-
vertently pick a disproportionate number of graduates from health-related majors.

If someone was permitted to pick and choose exactly which graduates were included in the
sample, it is entirely possible that the sample could be skewed to that person’s interests, which may
be entirely unintentional. This introduces bias into a sample. Sampling randomly helps resolve
this problem. The most basic random sample is called a simple random sample, and which is
equivalent to using a raffle to select cases. This means that each case in the population has an equal
chance of being included and there is no implied connection between the cases in the sample.

The act of taking a simple random sample helps minimize bias. However, bias can crop up in
other ways. Even when people are picked at random, e.g. for surveys, caution must be exercised
if the non-response rate is high. For instance, if only 30% of the people randomly sampled for
a survey actually respond, then it is unclear whether the results are representative of the entire
population. This non-response bias can skew results.

population of interest

Figure 1.13: Due to the possibility of non-response, surveys studies may only reach
a certain group within the population. It is difficult, and often times impossible,
to completely fix this problem.

Another common downfall is a convenience sample, where individuals who are easily ac-
cessible are more likely to be included in the sample. For instance, if a political survey is done
by stopping people walking in the Bronx, this will not represent all of New York City. It is often
difficult to discern what sub-population a convenience sample represents.

GUIDED PRACTICE 1.11

We can easily access ratings for products, sellers, and companies through websites. These ratings
are based only on those people who go out of their way to provide a rating. If 50% of online reviews
for a product are negative, do you think this means that 50% of buyers are dissatisfied with the
product?*?

19 Answers will vary. From our own anecdotal experiences, we believe people tend to rant more about products
that fell below expectations than rave about those that perform as expected. For this reason, we suspect there is a
negative bias in product ratings on sites like Amazon. However, since our experiences may not be representative, we
also keep an open mind.
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1.3.4 Observational studies

Data where no treatment has been explicitly applied (or explicitly withheld) is called observa-
tional data. For instance, the loan data and county data described in Section 1.2 are both examples
of observational data. Making causal conclusions based on experiments is often reasonable. How-
ever, making the same causal conclusions based on observational data can be treacherous and is not
recommended. Thus, observational studies are generally only sufficient to show associations or form
hypotheses that we later check using experiments.

GUIDED PRACTICE 1.12

Suppose an observational study tracked sunscreen use and skin cancer, and it was found that the
more sunscreen someone used, the more likely the person was to have skin cancer. Does this mean
sunscreen causes skin cancer??’

Some previous research tells us that using sunscreen actually reduces skin cancer risk, so maybe
there is another variable that can explain this hypothetical association between sunscreen usage and
skin cancer. One important piece of information that is absent is sun exposure. If someone is out
in the sun all day, she is more likely to use sunscreen and more likely to get skin cancer. Exposure
to the sun is unaccounted for in the simple investigation.

sun exposure

7N

? .
use sunscreen - -| skin cancer

Sun exposure is what is called a confounding variable,”! which is a variable that is correlated
with both the explanatory and response variables. While one method to justify making causal
conclusions from observational studies is to exhaust the search for confounding variables, there is no
guarantee that all confounding variables can be examined or measured.

GUIDED PRACTICE 1.13

Figure 1.8 shows a negative association between the homeownership rate and the percentage of multi-
unit structures in a county. However, it is unreasonable to conclude that there is a causal relationship
between the two variables. Suggest a variable that might explain the negative relationship.””

Observational studies come in two forms: prospective and retrospective studies. A prospec-
tive study identifies individuals and collects information as events unfold. For instance, medical
researchers may identify and follow a group of patients over many years to assess the possible influ-
ences of behavior on cancer risk. One example of such a study is The Nurses’ Health Study, started
in 1976 and expanded in 1989. This prospective study recruits registered nurses and then collects
data from them using questionnaires. Retrospective studies collect data after events have taken
place, e.g. researchers may review past events in medical records. Some data sets may contain both
prospectively- and retrospectively-collected variables.

1.3.5 Four sampling methods

Almost all statistical methods are based on the notion of implied randomness. If observational
data are not collected in a random framework from a population, these statistical methods — the
estimates and errors associated with the estimates — are not reliable. Here we consider four random
sampling techniques: simple, stratified, cluster, and multistage sampling. Figures 1.14 and 1.15
provide graphical representations of these techniques.

20No. See the paragraph following the exercise for an explanation.

21 Also called a lurking variable, confounding factor, or a confounder.

22 Answers will vary. Population density may be important. If a county is very dense, then this may require a
larger fraction of residents to live in multi-unit structures. Additionally, the high density may contribute to increases
in property value, making homeownership infeasible for many residents.
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Figure 1.14: Examples of simple random and stratified sampling. In the top panel,
simple random sampling was used to randomly select the 18 cases. In the bottom
panel, stratified sampling was used: cases were grouped into strata, then simple

random sampling was employed within each stratum.
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Simple random sampling is probably the most intuitive form of random sampling. Consider
the salaries of Major League Baseball (MLB) players, where each player is a member of one of the
league’s 30 teams. To take a simple random sample of 120 baseball players and their salaries, we
could write the names of that season’s several hundreds of players onto slips of paper, drop the slips
into a bucket, shake the bucket around until we are sure the names are all mixed up, then draw out
slips until we have the sample of 120 players. In general, a sample is referred to as “simple random”
if each case in the population has an equal chance of being included in the final sample and knowing
that a case is included in a sample does not provide useful information about which other cases are
included.

Stratified sampling is a divide-and-conquer sampling strategy. The population is divided
into groups called strata. The strata are chosen so that similar cases are grouped together, then a
second sampling method, usually simple random sampling, is employed within each stratum. In the
baseball salary example, the teams could represent the strata, since some teams have a lot more
money (up to 4 times as much!). Then we might randomly sample 4 players from each team for a
total of 120 players.

Stratified sampling is especially useful when the cases in each stratum are very similar with
respect to the outcome of interest. The downside is that analyzing data from a stratified sample
is a more complex task than analyzing data from a simple random sample. The analysis methods
introduced in this book would need to be extended to analyze data collected using stratified sampling.

EXAMPLE 1.14

Why would it be good for cases within each stratum to be very similar?

We might get a more stable estimate for the subpopulation in a stratum if the cases are very similar,
leading to more precise estimates within each group. When we combine these estimates into a single
estimate for the full population, that population estimate will tend to be more precise since each
individual group estimate is itself more precise.

In a cluster sample, we break up the population into many groups, called clusters. Then
we sample a fixed number of clusters and include all observations from each of those clusters in the
sample. A multistage sample is like a cluster sample, but rather than keeping all observations in
each cluster, we collect a random sample within each selected cluster.

Sometimes cluster or multistage sampling can be more economical than the alternative sampling
techniques. Also, unlike stratified sampling, these approaches are most helpful when there is a lot of
case-to-case variability within a cluster but the clusters themselves don’t look very different from one
another. For example, if neighborhoods represented clusters, then cluster or multistage sampling
work best when the neighborhoods are very diverse. A downside of these methods is that more
advanced techniques are typically required to analyze the data, though the methods in this book
can be extended to handle such data.

EXAMPLE 1.15

Suppose we are interested in estimating the malaria rate in a densely tropical portion of rural
Indonesia. We learn that there are 30 villages in that part of the Indonesian jungle, each more or
less similar to the next. Our goal is to test 150 individuals for malaria. What sampling method
should be employed?

A simple random sample would likely draw individuals from all 30 villages, which could make data
collection extremely expensive. Stratified sampling would be a challenge since it is unclear how we
would build strata of similar individuals. However, cluster sampling or multistage sampling seem
like very good ideas. If we decided to use multistage sampling, we might randomly select half of the
villages, then randomly select 10 people from each. This would probably reduce our data collection
costs substantially in comparison to a simple random sample, and the cluster sample would still
give us reliable information, even if we would need to analyze the data with slightly more advanced
methods than we discuss in this book.
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Figure 1.15: Examples of cluster and multistage sampling. In the top panel, cluster
sampling was used: data were binned into nine clusters, three of these clusters
were sampled, and all observations within these three cluster were included in the
sample. In the bottom panel, multistage sampling was used, which differs from
cluster sampling only in that we randomly select a subset of each cluster to be
included in the sample rather than measuring every case in each sampled cluster.
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Exercises

1.13  Air pollution and birth outcomes, scope of inference. Exercise 1.3 introduces a study where
researchers collected data to examine the relationship between air pollutants and preterm births in Southern
California. During the study air pollution levels were measured by air quality monitoring stations. Length of
gestation data were collected on 143,196 births between the years 1989 and 1993, and air pollution exposure
during gestation was calculated for each birth.

(a) Identify the population of interest and the sample in this study.

(b) Comment on whether or not the results of the study can be generalized to the population, and if the
findings of the study can be used to establish causal relationships.

1.14 Cheaters, scope of inference. Exercise 1.5 introduces a study where researchers studying the rela-
tionship between honesty, age, and self-control conducted an experiment on 160 children between the ages
of 5 and 15. The researchers asked each child to toss a fair coin in private and to record the outcome (white
or black) on a paper sheet, and said they would only reward children who report white. Half the students
were explicitly told not to cheat and the others were not given any explicit instructions. Differences were
observed in the cheating rates in the instruction and no instruction groups, as well as some differences across
children’s characteristics within each group.

(a) Identify the population of interest and the sample in this study.

(b) Comment on whether or not the results of the study can be generalized to the population, and if the
findings of the study can be used to establish causal relationships.

1.15 Buteyko method, scope of inference. Exercise 1.4 introduces a study on using the Buteyko shallow
breathing technique to reduce asthma symptoms and improve quality of life. As part of this study 600
asthma patients aged 18-69 who relied on medication for asthma treatment were recruited and randomly
assigned to two groups: one practiced the Buteyko method and the other did not. Those in the Buteyko
group experienced, on average, a significant reduction in asthma symptoms and an improvement in quality
of life.

(a) Identify the population of interest and the sample in this study.

(b) Comment on whether or not the results of the study can be generalized to the population, and if the
findings of the study can be used to establish causal relationships.

1.16 Stealers, scope of inference. Exercise 1.6 introduces a study on the relationship between socio-
economic class and unethical behavior. As part of this study 129 University of California Berkeley under-
graduates were asked to identify themselves as having low or high social-class by comparing themselves to
others with the most (least) money, most (least) education, and most (least) respected jobs. They were also
presented with a jar of individually wrapped candies and informed that the candies were for children in a
nearby laboratory, but that they could take some if they wanted. After completing some unrelated tasks,
participants reported the number of candies they had taken. It was found that those who were identified as
upper-class took more candy than others.

(a) Identify the population of interest and the sample in this study.

(b) Comment on whether or not the results of the study can be generalized to the population, and if the
findings of the study can be used to establish causal relationships.

1.17 Relaxing after work. The General Social Survey asked the question, “After an average work day,
about how many hours do you have to relax or pursue activities that you enjoy?” to a random sample of 1,155
Americans. The average relaxing time was found to be 1.65 hours. Determine which of the following is an
observation, a variable, a sample statistic (value calculated based on the observed sample), or a population
parameter.

(a) An American in the sample.
(b) Number of hours spent relaxing after an average work day.
(c) 1.65.

)

(d) Average number of hours all Americans spend relaxing after an average work day.
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1.18 Cats on YouTube. Suppose you want to estimate the percentage of videos on YouTube that are cat
videos. It is impossible for you to watch all videos on YouTube so you use a random video picker to select
1000 videos for you. You find that 2% of these videos are cat videos.Determine which of the following is an
observation, a variable, a sample statistic (value calculated based on the observed sample), or a population
parameter.

(a) Percentage of all videos on YouTube that are cat videos.

(b) 2%.
(c) A video in your sample.
(d) Whether or not a video is a cat video.

1.19 Course satisfaction across sections. A large college class has 160 students. All 160 students
attend the lectures together, but the students are divided into 4 groups, each of 40 students, for lab sections
administered by different teaching assistants. The professor wants to conduct a survey about how satisfied
the students are with the course, and he believes that the lab section a student is in might affect the student’s
overall satisfaction with the course.

(a) What type of study is this?
(b) Suggest a sampling strategy for carrying out this study.

1.20 Housing proposal across dorms. On a large college campus first-year students and sophomores live
in dorms located on the eastern part of the campus and juniors and seniors live in dorms located on the
western part of the campus. Suppose you want to collect student opinions on a new housing structure the
college administration is proposing and you want to make sure your survey equally represents opinions from
students from all years.

(a) What type of study is this?
(b) Suggest a sampling strategy for carrying out this study.

1.21 Internet use and life expectancy. The following scatterplot was created as part of a study evaluating
the relationship between estimated life expectancy at birth (as of 2014) and percentage of internet users (as
of 2009) in 208 countries for which such data were available.”?

90
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1.22 Stressed out, Part |. A study that surveyed a random sample of otherwise healthy high school students
found that they are more likely to get muscle cramps when they are stressed. The study also noted that
students drink more coffee and sleep less when they are stressed.

(a) What type of study is this?

(b) Can this study be used to conclude a causal relationship between increased stress and muscle cramps?

(c) State possible confounding variables that might explain the observed relationship between increased
stress and muscle cramps.

1.23 Evaluate sampling methods. A university wants to determine what fraction of its undergraduate
student body support a new $25 annual fee to improve the student union. For each proposed method below,
indicate whether the method is reasonable or not.

(a) Survey a simple random sample of 500 students.

(b) Stratify students by their field of study, then sample 10% of students from each stratum.

(c) Cluster students by their ages (e.g. 18 years old in one cluster, 19 years old in one cluster, etc.), then
randomly sample three clusters and survey all students in those clusters.

23CIA Factbook, Country Comparisons, 2014.
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1.24 Random digit dialing. The Gallup Poll uses a procedure called random digit dialing, which creates
phone numbers based on a list of all area codes in America in conjunction with the associated number of
residential households in each area code. Give a possible reason the Gallup Poll chooses to use random digit
dialing instead of picking phone numbers from the phone book.

1.25 Haters are gonna hate, study confirms. A study published in the Journal of Personality and
Social Psychology asked a group of 200 randomly sampled men and women to evaluate how they felt about
various subjects, such as camping, health care, architecture, taxidermy, crossword puzzles, and Japan in
order to measure their attitude towards mostly independent stimuli. Then, they presented the participants
with information about a new product: a microwave oven. This microwave oven does not exist, but the
participants didn’t know this, and were given three positive and three negative fake reviews. People who
reacted positively to the subjects on the dispositional attitude measurement also tended to react positively
to the microwave oven, and those who reacted negatively tended to react negatively to it. Researchers
concluded that “some people tend to like things, whereas others tend to dislike things, and a more thorough
understanding of this tendency will lead to a more thorough understanding of the psychology of attitudes.” >

(a) What are the cases?
) What is (are) the response variable(s) in this study?
(¢) What is (are) the explanatory variable(s) in this study?
(d) Does the study employ random sampling?
) Is this an observational study or an experiment? Explain your reasoning.
) Can we establish a causal link between the explanatory and response variables?
) Can the results of the study be generalized to the population at large?

1.26 Family size. Suppose we want to estimate household size, where a “household” is defined as people
living together in the same dwelling, and sharing living accommodations. If we select students at random
at an elementary school and ask them what their family size is, will this be a good measure of household
size? Or will our average be biased? If so, will it overestimate or underestimate the true value?

1.27 Sampling strategies. A statistics student who is curious about the relationship between the amount
of time students spend on social networking sites and their performance at school decides to conduct a
survey. Various research strategies for collecting data are described below. In each, name the sampling
method proposed and any bias you might expect.

(a) He randomly samples 40 students from the study’s population, gives them the survey, asks them to fill
it out and bring it back the next day.

(b) He gives out the survey only to his friends, making sure each one of them fills out the survey.

(c) He posts a link to an online survey on Facebook and asks his friends to fill out the survey.

(d) He randomly samples 5 classes and asks a random sample of students from those classes to fill out the
survey.

1.28 Reading the paper. Below are excerpts from two articles published in the NY Times:
(a) An article titled Risks: Smokers Found More Prone to Dementia states the following:*’
“Researchers analyzed data from 23,123 health plan members who participated in a voluntary exam and
health behavior survey from 1978 to 1985, when they were 50-60 years old. 23 years later, about 25% of
the group had dementia, including 1,136 with Alzheimer’s disease and 416 with vascular dementia. After
adjusting for other factors, the researchers concluded that pack-a-day smokers were 37% more likely than
nonsmokers to develop dementia, and the risks went up with increased smoking; 44% for one to two packs
a day; and twice the risk for more than two packs.”
Based on this study, can we conclude that smoking causes dementia later in life? Explain your reasoning.
(b) Another article titled The School Bully Is Sleepy states the following:*
“The University of Michigan study, collected survey data from parents on each child’s sleep habits and
asked both parents and teachers to assess behavioral concerns. About a third of the students studied were
identified by parents or teachers as having problems with disruptive behavior or bullying. The researchers
found that children who had behavioral issues and those who were identified as bullies were twice as likely
to have shown symptoms of sleep disorders.”
A friend of yours who read the article says, “The study shows that sleep disorders lead to bullying in
school children.” Is this statement justified? If not, how best can you describe the conclusion that can
be drawn from this study?

24Justin Hepler and Dolores Albarracin. “Attitudes without objects - Evidence for a dispositional attitude, its
measurement, and its consequences”. In: Journal of personality and social psychology 104.6 (2013), p. 1060.

25R.C. Rabin. “Risks: Smokers Found More Prone to Dementia”. In: New York Times (2010).

26T, Parker-Pope. “The School Bully Is Sleepy”. In: New York Times (2011).
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1.4 Experiments

Studies where the researchers assign treatments to cases are called experiments. When this
assignment includes randomization, e.g. using a coin flip to decide which treatment a patient receives,
it is called a randomized experiment. Randomized experiments are fundamentally important
when trying to show a causal connection between two variables.

1.4.1 Principles of experimental design

Randomized experiments are generally built on four principles.

Controlling. Researchers assign treatments to cases, and they do their best to control any other
differences in the groups.”?” For example, when patients take a drug in pill form, some patients
take the pill with only a sip of water while others may have it with an entire glass of water. To
control for the effect of water consumption, a doctor may ask all patients to drink a 12 ounce
glass of water with the pill.

Randomization. Researchers randomize patients into treatment groups to account for variables
that cannot be controlled. For example, some patients may be more susceptible to a disease
than others due to their dietary habits. Randomizing patients into the treatment or control
group helps even out such differences, and it also prevents accidental bias from entering the
study.

Replication. The more cases researchers observe, the more accurately they can estimate the effect
of the explanatory variable on the response. In a single study, we replicate by collecting a
sufficiently large sample. Additionally, a group of scientists may replicate an entire study to
verify an earlier finding.

Blocking. Researchers sometimes know or suspect that variables, other than the treatment, influ-
ence the response. Under these circumstances, they may first group individuals based on this
variable into blocks and then randomize cases within each block to the treatment groups. This
strategy is often referred to as blocking. For instance, if we are looking at the effect of a drug
on heart attacks, we might first split patients in the study into low-risk and high-risk blocks,
then randomly assign half the patients from each block to the control group and the other half
to the treatment group, as shown in Figure 1.16. This strategy ensures each treatment group
has an equal number of low-risk and high-risk patients.

It is important to incorporate the first three experimental design principles into any study, and
this book describes applicable methods for analyzing data from such experiments. Blocking is a
slightly more advanced technique, and statistical methods in this book may be extended to analyze
data collected using blocking.

1.4.2 Reducing bias in human experiments

Randomized experiments are the gold standard for data collection, but they do not ensure an
unbiased perspective into the cause and effect relationship in all cases. Human studies are perfect
examples where bias can unintentionally arise. Here we reconsider a study where a new drug was
used to treat heart attack patients. In particular, researchers wanted to know if the drug reduced
deaths in patients.

These researchers designed a randomized experiment because they wanted to draw causal con-
clusions about the drug’s effect. Study volunteers®® were randomly placed into two study groups.
One group, the treatment group, received the drug. The other group, called the control group,
did not receive any drug treatment.

27T his is a different concept than a control group, which we discuss in the second principle and in Section 1.4.2.
28 Human subjects are often called patients, volunteers, or study participants.
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Figure 1.16: Blocking using a variable depicting patient risk. Patients are first
divided into low-risk and high-risk blocks, then each block is evenly separated
into the treatment groups using randomization. This strategy ensures an equal
representation of patients in each treatment group from both the low-risk and

high-risk categories.
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Put yourself in the place of a person in the study. If you are in the treatment group, you
are given a fancy new drug that you anticipate will help you. On the other hand, a person in the
other group doesn’t receive the drug and sits idly, hoping her participation doesn’t increase her
risk of death. These perspectives suggest there are actually two effects: the one of interest is the
effectiveness of the drug, and the second is an emotional effect that is difficult to quantify.

Researchers aren’t usually interested in the emotional effect, which might bias the study. To
circumvent this problem, researchers do not want patients to know which group they are in. When
researchers keep the patients uninformed about their treatment, the study is said to be blind. But
there is one problem: if a patient doesn’t receive a treatment, she will know she is in the control
group. The solution to this problem is to give fake treatments to patients in the control group.
A fake treatment is called a placebo, and an effective placebo is the key to making a study truly
blind. A classic example of a placebo is a sugar pill that is made to look like the actual treatment
pill. Often times, a placebo results in a slight but real improvement in patients. This effect has been
dubbed the placebo effect.

The patients are not the only ones who should be blinded: doctors and researchers can ac-
cidentally bias a study. When a doctor knows a patient has been given the real treatment, she
might inadvertently give that patient more attention or care than a patient that she knows is on
the placebo. To guard against this bias, which again has been found to have a measurable effect
in some instances, most modern studies employ a double-blind setup where doctors or researchers
who interact with patients are, just like the patients, unaware of who is or is not receiving the
treatment.””

GUIDED PRACTICE 1.16

Look back to the study in Section 1.1 where researchers were testing whether stents were effective
at reducing strokes in at-risk patients. Is this an experiment? Was the study blinded? Was it
double-blinded?”"

GUIDED PRACTICE 1.17

For the study in Section 1.1, could the researchers have employed a placebo? If so, what would that
placebo have looked like??!

You may have many questions about the ethics of sham surgeries to create a placebo after
reading Guided Practice 1.17. These questions may have even arisen in your mind when in the
general experiment context, where a possibly helpful treatment was withheld from individuals in
the control group; the main difference is that a sham surgery tends to create additional risk, while
withholding a treatment only maintains a person’s risk.

There are always multiple viewpoints of experiments and placebos, and rarely is it obvious
which is ethically “correct”. For instance, is it ethical to use a sham surgery when it creates a risk to
the patient? However, if we don’t use sham surgeries, we may promote the use of a costly treatment
that has no real effect; if this happens, money and other resources will be diverted away from other
treatments that are known to be helpful. Ultimately, this is a difficult situation where we cannot
perfectly protect both the patients who have volunteered for the study and the patients who may
benefit (or not) from the treatment in the future.

29There are always some researchers involved in the study who do know which patients are receiving which treat-
ment. However, they do not interact with the study’s patients and do not tell the blinded health care professionals
who is receiving which treatment.

30The researchers assigned the patients into their treatment groups, so this study was an experiment. However,
the patients could distinguish what treatment they received, so this study was not blind. The study could not be
double-blind since it was not blind.

31Ultimately, can we make patients think they got treated from a surgery? In fact, we can, and some experiments
use what’s called a sham surgery. In a sham surgery, the patient does undergo surgery, but the patient does not
receive the full treatment, though they will still get a placebo effect.
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Exercises

1.29 Light and exam performance. A study is designed to test the effect of light level on exam performance
of students. The researcher believes that light levels might have different effects on males and females, so
wants to make sure both are equally represented in each treatment. The treatments are fluorescent overhead
lighting, yellow overhead lighting, no overhead lighting (only desk lamps).

(a) What is the response variable?
(b) What is the explanatory variable? What are its levels?
(c) What is the blocking variable? What are its levels?

1.30 Vitamin supplements. To assess the effectiveness of taking large doses of vitamin C in reducing
the duration of the common cold, researchers recruited 400 healthy volunteers from staff and students at a
university. A quarter of the patients were assigned a placebo, and the rest were evenly divided between 1g
Vitamin C, 3g Vitamin C, or 3g Vitamin C plus additives to be taken at onset of a cold for the following two
days. All tablets had identical appearance and packaging. The nurses who handed the prescribed pills to
the patients knew which patient received which treatment, but the researchers assessing the patients when
they were sick did not. No significant differences were observed in any measure of cold duration or severity
between the four groups, and the placebo group had the shortest duration of symptoms.*”
a) Was this an experiment or an observational study? Why?

) What are the explanatory and response variables in this study?

) Were the patients blinded to their treatment?
(d) Was this study double-blind?

) Participants are ultimately able to choose whether or not to use the pills prescribed to them. We might
expect that not all of them will adhere and take their pills. Does this introduce a confounding variable
to the study? Explain your reasoning.

1.31 Light, noise, and exam performance. A study is designed to test the effect of light level and noise
level on exam performance of students. The researcher believes that light and noise levels might have different
effects on males and females, so wants to make sure both are equally represented in each treatment. The
light treatments considered are fluorescent overhead lighting, yellow overhead lighting, no overhead lighting
(only desk lamps). The noise treatments considered are no noise, construction noise, and human chatter
noise.

(a) What type of study is this?
(b) How many factors are considered in this study? Identify them, and describe their levels.
(c) What is the role of the sex variable in this study?

1.32 Music and learning. You would like to conduct an experiment in class to see if students learn better
if they study without any music, with music that has no lyrics (instrumental), or with music that has lyrics.
Briefly outline a design for this study.

1.33 Soda preference. You would like to conduct an experiment in class to see if your classmates prefer
the taste of regular Coke or Diet Coke. Briefly outline a design for this study.

1.34 Exercise and mental health. A researcher is interested in the effects of exercise on mental health
and he proposes the following study: Use stratified random sampling to ensure representative proportions
of 18-30, 31-40 and 41- 55 year olds from the population. Next, randomly assign half the subjects from each
age group to exercise twice a week, and instruct the rest not to exercise. Conduct a mental health exam at
the beginning and at the end of the study, and compare the results.
a) What type of study is this?

) What are the treatment and control groups in this study?
(¢) Does this study make use of blocking? If so, what is the blocking variable?
(d) Does this study make use of blinding?

) Comment on whether or not the results of the study can be used to establish a causal relationship
between exercise and mental health, and indicate whether or not the conclusions can be generalized to
the population at large.

(f) Suppose you are given the task of determining if this proposed study should get funding. Would you
have any reservations about the study proposal?

32C. Audera et al. “Mega-dose vitamin C in treatment of the common cold: a randomised controlled trial”. In:

Medical Journal of Australia 175.7 (2001), pp. 359-362.
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Chapter exercises

1.35 Pet names. The city of Seattle, WA has an open data portal that includes pets registered in the city.
For each registered pet, we have information on the pet’s name and species. The following visualization
plots the proportion of dogs with a given name versus the proportion of cats with the same name. The 20
most common cat and dog names are displayed. The diagonal line on the plot is the x = y line; if a name
appeared on this line, the name’s popularity would be exactly the same for dogs and cats.
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1.36 Stressed out, Part Il. In a study evaluating the relationship between stress and muscle cramps, half
the subjects are randomly assigned to be exposed to increased stress by being placed into an elevator that
falls rapidly and stops abruptly and the other half are left at no or baseline stress.

(a) What type of study is this?
(b) Can this study be used to conclude a causal relationship between increased stress and muscle cramps?

1.37 Chia seeds and weight loss. Chia Pets — those terra-cotta figurines that sprout fuzzy green hair —
made the chia plant a household name. But chia has gained an entirely new reputation as a diet supplement.
In one 2009 study, a team of researchers recruited 38 men and divided them randomly into two groups:
treatment or control. They also recruited 38 women, and they randomly placed half of these participants
into the treatment group and the other half into the control group. One group was given 25 grams of chia
seeds twice a day, and the other was given a placebo. The subjects volunteered to be a part of the study.
After 12 weeks, the scientists found no significant difference between the groups in appetite or weight loss.*”

(a)
(b)

)

What type of study is this?
What are the experimental and control treatments in this study?

Has blocking been used in this study? If so, what is the blocking variable?

(c
(d) Has blinding been used in this study?
(e

) Comment on whether or not we can make a causal statement, and indicate whether or not we can
generalize the conclusion to the population at large.

1.38 City council survey. A city council has requested a household survey be conducted in a suburban
area of their city. The area is broken into many distinct and unique neighborhoods, some including large
homes, some with only apartments, and others a diverse mixture of housing structures. For each part below,
identify the sampling methods described, and describe the statistical pros and cons of the method in the
city’s context.

(a)
(b)
(c)
(d)

(e)

Randomly sample 200 households from the city.
Divide the city into 20 neighborhoods, and sample 10 households from each neighborhood.

Divide the city into 20 neighborhoods, randomly sample 3 neighborhoods, and then sample all households
from those 3 neighborhoods.

Divide the city into 20 neighborhoods, randomly sample 8 neighborhoods, and then randomly sample
50 households from those neighborhoods.

Sample the 200 households closest to the city council offices.

33D.C. Nieman et al. “Chia seed does not promote weight loss or alter disease risk factors in overweight adults”.

In: Nutrition Research 29.6 (2009), pp. 414-418.


http://www.openintro.org/redirect.php?go=textbook-chia_seeds_2009&referrer=os4_pdf

1.4. EXPERIMENTS

1.39 Flawed reasoning. Identify the flaw(s) in reasoning in the following scenarios. Explain what the
individuals in the study should have done differently if they wanted to make such strong conclusions.

(a) Students at an elementary school are given a questionnaire that they are asked to return after their
parents have completed it. One of the questions asked is, “Do you find that your work schedule makes
it difficult for you to spend time with your kids after school?” Of the parents who replied, 85% said
“no”. Based on these results, the school officials conclude that a great majority of the parents have no
difficulty spending time with their kids after school.

(b) A survey is conducted on a simple random sample of 1,000 women who recently gave birth, asking them
about whether or not they smoked during pregnancy. A follow-up survey asking if the children have
respiratory problems is conducted 3 years later, however, only 567 of these women are reached at the
same address. The researcher reports that these 567 women are representative of all mothers.

(¢) An orthopedist administers a questionnaire to 30 of his patients who do not have any joint problems
and finds that 20 of them regularly go running. He concludes that running decreases the risk of joint
problems.

1.40 Income and education in US counties. The scatterplot below shows the relationship between per
capita income (in thousands of dollars) and percent of population with a bachelor’s degree in 3,143 counties
in the US in 2010.

$60k
(a) What are the explanatory and response ®
variables? g

(b) Describe the relationship between the two 2 $40k
variables. Make sure to discuss unusual ob- g
servations, if any. 3

(¢) Can we conclude that having a bachelor’s O $20k
degree increases one’s income? &

$0

T T T T I
0% 20% 40% 60% 80%
Percent with Bachelor's Degree

1.41 Eat better, feel better? In a public health study on the effects of consumption of fruits and vegetables
on psychological well-being in young adults, participants were randomly assigned to three groups: (1) diet-
as-usual, (2) an ecological momentary intervention involving text message reminders to increase their fruits
and vegetable consumption plus a voucher to purchase them, or (3) a fruit and vegetable intervention in
which participants were given two additional daily servings of fresh fruits and vegetables to consume on top
of their normal diet. Participants were asked to take a nightly survey on their smartphones. Participants
were student volunteers at the University of Otago, New Zealand. At the end of the 14-day study, only
participants in the third group showed improvements to their psychological well-being across the 14-days
relative to the other groups.®

(a) What type of study is this?
(b
(

) Identify the explanatory and response variables.

(¢) Comment on whether the results of the study can be generalized to the population.
)
)

d
(e

Comment on whether the results of the study can be used to establish causal relationships.

A newspaper article reporting on the study states, “The results of this study provide proof that giving
young adults fresh fruits and vegetables to eat can have psychological benefits, even over a brief period
of time.” How would you suggest revising this statement so that it can be supported by the study?

34Tamlin S Conner et al. “Let them eat fruit! The effect of fruit and vegetable consumption on psychological
well-being in young adults: A randomized controlled trial”. In: PloS one 12.2 (2017), e0171206.
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1.42 Screens, teens, and psychological well-being. In a study of three nationally representative large-
scale data sets from Ireland, the United States, and the United Kingdom (n = 17,247), teenagers between
the ages of 12 to 15 were asked to keep a diary of their screen time and answer questions about how they
felt or acted. The answers to these questions were then used to compute a psychological well-being score.
Additional data were collected and included in the analysis, such as each child’s sex and age, and on the
mother’s education, ethnicity, psychological distress, and employment. The study concluded that there is
little clear-cut evidence that screen time decreases adolescent well-being.*”

(a) What type of study is this?
(b
(

) Identify the explanatory variables.
(c) Identify the response variable.
)

)

d
(e

Comment on whether the results of the study can be generalized to the population, and why.

Comment on whether the results of the study can be used to establish causal relationships.

1.43 Stanford Open Policing. The Stanford Open Policing project gathers, analyzes, and releases records
from traffic stops by law enforcement agencies across the United States. Their goal is to help researchers,
journalists, and policymakers investigate and improve interactions between police and the public.”® The
following is an excerpt from a summary table created based off of the data collected as part of this project.

Driver’s  No. of stops % of stopped
County State race per year cars searched drivers arrested
Apaice County  Arizona Black 266 0.08 0.02
Apaice County  Arizona Hispanic 1008 0.05 0.02
Apaice County  Arizona White 6322 0.02 0.01
Cochise County  Arizona Black 1169 0.05 0.01
Cochise County  Arizona Hispanic 9453 0.04 0.01
Cochise County  Arizona White 10826 0.02 0.01
Wood County Wisconsin  Black 16 0.24 0.10
Wood County Wisconsin  Hispanic 27 0.04 0.03
Wood County Wisconsin ~ White 1157 0.03 0.03

(a) What variables were collected on each individual traffic stop in order to create to the summary table
above?

(b) State whether each variable is numerical or categorical. If numerical, state whether it is continuous or
discrete. If categorical, state whether it is ordinal or not.

(c) Suppose we wanted to evaluate whether vehicle search rates are different for drivers of different races. In
this analysis, which variable would be the response variable and which variable would be the explanatory
variable?

1.44 Space launches. The following summary table shows the number of space launches in the US by the
type of launching agency and the outcome of the launch (success or failure).’”

1957 - 1999 2000 - 2018
Failure Success | Failure Success
Private 13 295 10 562
State 281 3751 33 711
Startup - - 5 65

(a) What variables were collected on each launch in order to create to the summary table above?

(b) State whether each variable is numerical or categorical. If numerical, state whether it is continuous or
discrete. If categorical, state whether it is ordinal or not.

(c) Suppose we wanted to study how the success rate of launches vary between launching agencies and over
time. In this analysis, which variable would be the response variable and which variable would be the
explanatory variable?

35 Amy Orben and AK Baukney-Przybylski. “Screens, Teens and Psychological Well-Being: Evidence from three
time-use diary studies”. In: Psychological Science (2018).

36Emma Pierson et al. “A large-scale analysis of racial disparities in police stops across the United States”. In:
arXiv preprint arXiw:1706.05678 (2017).

37JSR Launch Vehicle Database, A comprehensive list of suborbital space launches, 2019 Feb 10 Edition.
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This chapter focuses on the mechanics and construction of summary
statistics and graphs. We use statistical software for generating the
summaries and graphs presented in this chapter and book. However,
since this might be your first exposure to these concepts, we take our
time in this chapter to detail how to create them. Mastery of the
content presented in this chapter will be crucial for understanding the

methods and techniques introduced in rest of the book.

Qo
D+

For videos, slides, and other resources, please visit

www.openintro.org/os


http://www.openintro.org/redirect.php?go=stat&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=os&referrer=os4_pdf
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2.1 Examining numerical data

In this section we will explore techniques for summarizing numerical variables. For example,
consider the loan_amount variable from the loan50 data set, which represents the loan size for all
50 loans in the data set. This variable is numerical since we can sensibly discuss the numerical
difference of the size of two loans. On the other hand, area codes and zip codes are not numerical,
but rather they are categorical variables.

Throughout this section and the next, we will apply these methods using the loan50 and
county data sets, which were introduced in Section 1.2. If you’d like to review the variables from
either data set, see Figures 1.3 and 1.5.

2.1.1 Scatterplots for paired data

A scatterplot provides a case-by-case view of data for two numerical variables. In Figure 1.8
on page 16, a scatterplot was used to examine the homeownership rate against the fraction of housing
units that were part of multi-unit properties (e.g. apartments) in the county data set. Another
scatterplot is shown in Figure 2.1, comparing the total income of a borrower (total_income) and
the amount they borrowed (loan_amount) for the loan50 data set. In any scatterplot, each point
represents a single case. Since there are 50 cases in loan50, there are 50 points in Figure 2.1.
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Figure 2.1: A scatterplot of total_income versus loan_amount for the loan50
data set.

Looking at Figure 2.1, we see that there are many borrowers with an income below $100,000
on the left side of the graph, while there are a handful of borrowers with income above $250,000.

EXAMPLE 2.1

Figure 2.2 shows a plot of median household income against the poverty rate for 3,142 counties.
What can be said about the relationship between these variables?

The relationship is evidently nonlinear, as highlighted by the dashed line. This is different from
previous scatterplots we’ve seen, which show relationships that do not show much, if any, curvature
in the trend.
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Figure 2.2: A scatterplot of the median household income against the poverty rate

for the county data set. A statistical model has also been fit to the data and is
shown as a dashed line.

GUIDED PRACTICE 2.2
What do scatterplots reveal about the data, and how are they useful?’

GUIDED PRACTICE 2.3
Describe two variables that would have a horseshoe-shaped association in a scatterplot (N or —~).”

2.1.2 Dot plots and the mean

Sometimes two variables are one too many: only one variable may be of interest. In these cases,
a dot plot provides the most basic of displays. A dot plot is a one-variable scatterplot; an example
using the interest rate of 50 loans is shown in Figure 2.3. A stacked version of this dot plot is shown
in Figure 2.4.

e 80 @ O® @
P N

| | | | |
5% 10% 15% 20% 25%

Interest Rate

Figure 2.3: A dot plot of interest_rate for the loan50 data set. The distribu-
tion’s mean is shown as a red triangle.

L Answers may vary. Scatterplots are helpful in quickly spotting associations relating variables, whether those
associations come in the form of simple trends or whether those relationships are more complex.

2Consider the case where your vertical axis represents something “good” and your horizontal axis represents
something that is only good in moderation. Health and water consumption fit this description: we require some water
to survive, but consume too much and it becomes toxic and can kill a person.
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Figure 2.4: A stacked dot plot of interest_rate for the 1oan50 data set. The rates
have been rounded to the nearest percent in this plot, and the distribution’s mean
is shown as a red triangle.

The mean, often called the average, is a common way to measure the center of a distribution
of data. To compute the mean interest rate, we add up all the interest rates and divide by the number
of observations:

10. .92 26. .-+ 6.
. 090%+99%+£30%+ +608%:11'57%

The sample mean is often labeled Z. The letter = is being used as a generic placeholder for the
variable of interest, interest_rate, and the bar over the x communicates we’re looking at the
average interest rate, which for these 50 loans was 11.57%. It is useful to think of the mean as the
balancing point of the distribution, and it’s shown as a triangle in Figures 2.3 and 2.4.

MEAN

The sample mean can be computed as the sum of the observed values divided by the number
of observations:

T+ X2+ -+ Ty
n

i‘:

where z1, xs, ..., T, represent the n observed values.

GUIDED PRACTICE 2.4

Examine the equation for the mean. What does x; correspond to? And z5?7 Can you infer a general
meaning to what z; might represent??

GUIDED PRACTICE 2.5

What was n in this sample of loans?*

The loan50 data set represents a sample from a larger population of loans made through
Lending Club. We could compute a mean for this population in the same way as the sample mean.
However, the population mean has a special label: pu. The symbol p is the Greek letter mu and
represents the average of all observations in the population. Sometimes a subscript, such as ., is used
to represent which variable the population mean refers to, e.g. u,. Often times it is too expensive
to measure the population mean precisely, so we often estimate p using the sample mean, .

321 corresponds to the interest rate for the first loan in the sample (10.90%), x2 to the second loan’s interest rate

(9.92%), and z; corresponds to the interest rate for the it? loan in the data set. For example, if ¢ = 4, then we’re
examining x4, which refers to the fourth observation in the data set.
4The sample size was n = 50.
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EXAMPLE 2.6

The average interest rate across all loans in the population can be estimated using the sample data.
Based on the sample of 50 loans, what would be a reasonable estimate of ., the mean interest rate
for all loans in the full data set?

The sample mean, 11.57%, provides a rough estimate of u,. While it’s not perfect, this is our single
best guess of the average interest rate of all the loans in the population under study.

In Chapter 5 and beyond, we will develop tools to characterize the accuracy of point estimates like
the sample mean. As you might have guessed, point estimates based on larger samples tend to be
more accurate than those based on smaller samples.

EXAMPLE 2.7

The mean is useful because it allows us to rescale or standardize a metric into something more easily
interpretable and comparable. Provide 2 examples where the mean is useful for making comparisons.

1. We would like to understand if a new drug is more effective at treating asthma attacks than the
standard drug. A trial of 1000 adults is set up, where 500 receive the new drug, and 1000 receive a
standard drug in the control group:

New drug Standard drug
Number of patients 500 1000
Total asthma attacks 200 300

Comparing the raw counts of 200 to 300 asthma attacks would make it appear that the new drug is
better, but this is an artifact of the imbalanced group sizes. Instead, we should look at the average
number of asthma attacks per patient in each group:

New drug: 200/500 = 0.4 Standard drug: 300/1000 = 0.3

The standard drug has a lower average number of asthma attacks per patient than the average in
the treatment group.

2. Emilio opened a food truck last year where he sells burritos, and his business has stabilized
over the last 3 months. Over that 3 month period, he has made $11,000 while working 625 hours.
Emilio’s average hourly earnings provides a useful statistic for evaluating whether his venture is,
at least from a financial perspective, worth it:

$11000

— = §17. h
595 hours $17.60 per hour

By knowing his average hourly wage, Emilio now has put his earnings into a standard unit that is
easier to compare with many other jobs that he might consider.

EXAMPLE 2.8

Suppose we want to compute the average income per person in the US. To do so, we might first
think to take the mean of the per capita incomes across the 3,142 counties in the county data set.
What would be a better approach?

The county data set is special in that each county actually represents many individual people. If
we were to simply average across the income variable, we would be treating counties with 5,000 and
5,000,000 residents equally in the calculations. Instead, we should compute the total income for each
county, add up all the counties’ totals, and then divide by the number of people in all the counties.
If we completed these steps with the county data, we would find that the per capita income for the
US is $30,861. Had we computed the simple mean of per capita income across counties, the result
would have been just $26,093!

This example used what is called a weighted mean. For more information on this topic, check out
the following online supplement regarding weighted means openintro.org/d?file=stat_wtd_mean.


http://www.openintro.org/redirect.php?go=stat_wtd_mean&referrer=os4_pdf

2.1. EXAMINING NUMERICAL DATA

2.1.3 Histograms and shape

Dot plots show the exact value for each observation. This is useful for small data sets, but they
can become hard to read with larger samples. Rather than showing the value of each observation, we
prefer to think of the value as belonging to a bin. For example, in the loan50 data set, we created a
table of counts for the number of loans with interest rates between 5.0% and 7.5%, then the number
of loans with rates between 7.5% and 10.0%, and so on. Observations that fall on the boundary of
a bin (e.g. 10.00%) are allocated to the lower bin. This tabulation is shown in Figure 2.5. These
binned counts are plotted as bars in Figure 2.6 into what is called a histogram, which resembles a
more heavily binned version of the stacked dot plot shown in Figure 2.4.

Interest Rate 5.0% - 7.5% 7.5% - 10.0% 10.0% - 12.5% 12.5% - 15.0% --- 25.0% - 27.5%
Count 11 15 8 4 1

Figure 2.5: Counts for the binned interest_rate data.
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Figure 2.6: A histogram of interest_rate. This distribution is strongly skewed
to the right.

Histograms provide a view of the data density. Higher bars represent where the data are
relatively more common. For instance, there are many more loans with rates between 5% and 10%
than loans with rates between 20% and 25% in the data set. The bars make it easy to see how the
density of the data changes relative to the interest rate.

Histograms are especially convenient for understanding the shape of the data distribution.
Figure 2.6 suggests that most loans have rates under 15%, while only a handful of loans have rates
above 20%. When data trail off to the right in this way and has a longer right tail, the shape is said
to be right skewed.’

Data sets with the reverse characteristic — a long, thinner tail to the left — are said to be left
skewed. We also say that such a distribution has a long left tail. Data sets that show roughly equal
trailing off in both directions are called symmetric.

LONG TAILS TO IDENTIFY SKEW

When data trail off in one direction, the distribution has a long tail. If a distribution has a
long left tail, it is left skewed. If a distribution has a long right tail, it is right skewed.

5Other ways to describe data that are right skewed: skewed to the right, skewed to the high end, or skewed
to the positive end.

45



46

CHAPTER 2. SUMMARIZING DATA

GUIDED PRACTICE 2.9

Take a look at the dot plots in Figures 2.3 and 2.4. Can you see the skew in the data? Is it easier
to see the skew in this histogram or the dot plots?°

GUIDED PRACTICE 2.10

Besides the mean (since it was labeled), what can you see in the dot plots that you cannot see in
the histogram?”

In addition to looking at whether a distribution is skewed or symmetric, histograms can be
used to identify modes. A mode is represented by a prominent peak in the distribution. There is
only one prominent peak in the histogram of loan_amount.

A definition of mode sometimes taught in math classes is the value with the most occurrences
in the data set. However, for many real-world data sets, it is common to have no observations with
the same value in a data set, making this definition impractical in data analysis.

Figure 2.7 shows histograms that have one, two, or three prominent peaks. Such distributions
are called unimodal, bimodal, and multimodal, respectively. Any distribution with more than
2 prominent peaks is called multimodal. Notice that there was one prominent peak in the unimodal
distribution with a second less prominent peak that was not counted since it only differs from its
neighboring bins by a few observations.

20 1 20 1 20 1
15 4 15 4
10 1 10 4
5 5
0 - o
T T T T T T T T T T T T T T
0 5 10 15 0 5 10 15 20 0 5 10 15 20

Figure 2.7: Counting only prominent peaks, the distributions are (left to right)
unimodal, bimodal, and multimodal. Note that we’ve said the left plot is unimodal
intentionally. This is because we are counting prominent peaks, not just any peak.

EXAMPLE 2.11

Figure 2.6 reveals only one prominent mode in the interest rate. Is the distribution unimodal,
bimodal, or multimodal?

Unimodal. Remember that uni stands for 1 (think wunicycles). Similarly, bi stands for 2 (think
bicycles). We're hoping a multicycle will be invented to complete this analogy.

GUIDED PRACTICE 2.12

Height measurements of young students and adult teachers at a K-3 elementary school were taken.
How many modes would you expect in this height data set?®

Looking for modes isn’t about finding a clear and correct answer about the number of modes in
a distribution, which is why prominent is not rigorously defined in this book. The most important
part of this examination is to better understand your data.

6The skew is visible in all three plots, though the flat dot plot is the least useful. The stacked dot plot and
histogram are helpful visualizations for identifying skew.

7The interest rates for individual loans.

8There might be two height groups visible in the data set: one of the students and one of the adults. That is, the
data are probably bimodal.
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2.1.4 Variance and standard deviation

The mean was introduced as a method to describe the center of a data set, and variability in
the data is also important. Here, we introduce two measures of variability: the variance and the
standard deviation. Both of these are very useful in data analysis, even though their formulas are
a bit tedious to calculate by hand. The standard deviation is the easier of the two to comprehend,
and it roughly describes how far away the typical observation is from the mean.

We call the distance of an observation from its mean its deviation. Below are the deviations
for the 1%, 274, 374 and 50" observations in the interest_rate variable:

r; —2 =10.90 — 11.57 = —-0.67
Ty —T =992 —-11.57 = —-1.65
Tg — 2 =26.30 — 11.57 = 14.73

5o — Z = 6.08 — 11.57 = —5.49

If we square these deviations and then take an average, the result is equal to the sample variance,
denoted by s2:

2 (—0.67)% + (—1.65)% + (14.73)% 4 - - - + (—5.49)?
B 50 — 1
0454 2.72 4 216.97 + - - - + 30.14
B 49

= 25.52

We divide by n — 1, rather than dividing by n, when computing a sample’s variance; there’s some
mathematical nuance here, but the end result is that doing this makes this statistic slightly more
reliable and useful.

Notice that squaring the deviations does two things. First, it makes large values relatively
much larger, seen by comparing (—0.67)2, (—1.65)2, (14.73)2, and (—5.49)?. Second, it gets rid of
any negative signs.

The standard deviation is defined as the square root of the variance:

s =v25.52 =5.05

While often omitted, a subscript of , may be added to the variance and standard deviation, i.e.
s2 and s,, if it is useful as a reminder that these are the variance and standard deviation of the

observations represented by z,, x5, ..., T,,.

VARIANCE AND STANDARD DEVIATION

The variance is the average squared distance from the mean. The standard deviation is the
square root of the variance. The standard deviation is useful when considering how far the data
are distributed from the mean.

The standard deviation represents the typical deviation of observations from the mean. Usually
about 70% of the data will be within one standard deviation of the mean and about 95% will
be within two standard deviations. However, as seen in Figures 2.8 and 2.9, these percentages
are not strict rules.

Like the mean, the population values for variance and standard deviation have special symbols:
o2 for the variance and o for the standard deviation. The symbol o is the Greek letter sigma.
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6.5% 11.6% 16.7% 21.8% 26.9%
Interest Rate, X = 11.57%, s, = 5.05%

Figure 2.8: For the interest_rate variable, 34 of the 50 loans (68%) had interest
rates within 1 standard deviation of the mean, and 48 of the 50 loans (96%) had
rates within 2 standard deviations. Usually about 70% of the data are within
1 standard deviation of the mean and 95% within 2 standard deviations, though
this is far from a hard rule.

-
-3 -2 -1 0 1 2 3

Figure 2.9: Three very different population distributions with the same mean y = 0
and standard deviation o = 1.

GUIDED PRACTICE 2.13

On page 45, the concept of shape of a distribution was introduced. A good description of the shape
of a distribution should include modality and whether the distribution is symmetric or skewed to
one side. Using Figure 2.9 as an example, explain why such a description is important.’

EXAMPLE 2.14

Describe the distribution of the interest_rate variable using the histogram in Figure 2.6. The
description should incorporate the center, variability, and shape of the distribution, and it should
also be placed in context. Also note any especially unusual cases.

The distribution of interest rates is unimodal and skewed to the high end. Many of the rates fall

near the mean at 11.57%, and most fall within one standard deviation (5.05%) of the mean. There
are a few exceptionally large interest rates in the sample that are above 20%.

In practice, the variance and standard deviation are sometimes used as a means to an end, where
the “end” is being able to accurately estimate the uncertainty associated with a sample statistic.
For example, in Chapter 5 the standard deviation is used in calculations that help us understand
how much a sample mean varies from one sample to the next.

9Figure 2.9 shows three distributions that look quite different, but all have the same mean, variance, and standard
deviation. Using modality, we can distinguish between the first plot (bimodal) and the last two (unimodal). Using
skewness, we can distinguish between the last plot (right skewed) and the first two. While a picture, like a histogram,
tells a more complete story, we can use modality and shape (symmetry/skew) to characterize basic information about
a distribution.



2.1. EXAMINING NUMERICAL DATA

2.1.5 Box plots, quartiles, and the median

A box plot summarizes a data set using five statistics while also plotting unusual observations.
Figure 2.10 provides a vertical dot plot alongside a box plot of the interest_rate variable from the
loanb50 data set.
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Figure 2.10: A vertical dot plot, where points have been horizontally stacked, next
to a labeled box plot for the interest rates of the 50 loans.

The first step in building a box plot is drawing a dark line denoting the median, which splits the
data in half. Figure 2.10 shows 50% of the data falling below the median and other 50% falling above
the median. There are 50 loans in the data set (an even number) so the data are perfectly split into
two groups of 25. We take the median in this case to be the average of the two observations closest to
the 50" percentile, which happen to be the same value in this data set: (9.93% +9.93%)/2 = 9.93%.
When there are an odd number of observations, there will be exactly one observation that splits the
data into two halves, and in such a case that observation is the median (no average needed).

MEDIAN: THE NUMBER IN THE MIDDLE

If the data are ordered from smallest to largest, the median is the observation right in the
middle. If there are an even number of observations, there will be two values in the middle, and
the median is taken as their average.

The second step in building a box plot is drawing a rectangle to represent the middle 50% of
the data. The total length of the box, shown vertically in Figure 2.10, is called the interquartile
range (IQR, for short). It, like the standard deviation, is a measure of variability in data. The more
variable the data, the larger the standard deviation and IQR tend to be. The two boundaries of the
box are called the first quartile (the 25" percentile, i.e. 25% of the data fall below this value) and
the third quartile (the 75!" percentile), and these are often labeled Q; and @3, respectively.
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INTERQUARTILE RANGE (IQR)
The IQR is the length of the box in a box plot. It is computed as

IQR=Q3 — Q1

where @7 and Qs are the 25" and 75" percentiles.

GUIDED PRACTICE 2.15

What percent of the data fall between (1 and the median? What percent is between the median
and Q37"

Extending out from the box, the whiskers attempt to capture the data outside of the box.
However, their reach is never allowed to be more than 1.5 x IQR. They capture everything within
this reach. In Figure 2.10, the upper whisker does not extend to the last two points, which is beyond
@3+ 1.5 x IQR, and so it extends only to the last point below this limit. The lower whisker stops
at the lowest value, 5.31%, since there is no additional data to reach; the lower whisker’s limit is not
shown in the figure because the plot does not extend down to @1 — 1.5 X IQR. In a sense, the box is
like the body of the box plot and the whiskers are like its arms trying to reach the rest of the data.

Any observation lying beyond the whiskers is labeled with a dot. The purpose of labeling these
points — instead of extending the whiskers to the minimum and maximum observed values — is to help
identify any observations that appear to be unusually distant from the rest of the data. Unusually
distant observations are called outliers. In this case, it would be reasonable to classify the interest
rates of 24.85% and 26.30% as outliers since they are numerically distant from most of the data.

OUTLIERS ARE EXTREME

An outlier is an observation that appears extreme relative to the rest of the data.
Examining data for outliers serves many useful purposes, including
1. Identifying strong skew in the distribution.

2. Identifying possible data collection or data entry errors.

3. Providing insight into interesting properties of the data.

GUIDED PRACTICE 2.16
Using Figure 2.10, estimate the following values for interest_rate in the loan50 data set:

(a) Q1, (b) @3, and (c) IQR.""

10Since Q1 and Q3 capture the middle 50% of the data and the median splits the data in the middle, 25% of the
data fall between @1 and the median, and another 25% falls between the median and Q3.

M These visual estimates will vary a little from one person to the next: Q1 = 8%, Q3 = 14%, IQR = Q3 — Q1 = 6%.
(The true values: Q1 = 7.96%, Q3 = 13.72%, IQR = 5.76%.)
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2.1.6 Robust statistics

How are the sample statistics of the interest_rate data set affected by the observation, 26.3%?
What would have happened if this loan had instead been only 15%? What would happen to these
summary statistics if the observation at 26.3% had been even larger, say 35%7? These scenarios are
plotted alongside the original data in Figure 2.11, and sample statistics are computed under each
scenario in Figure 2.12.

Original § 888L “fef 8 8 P
26.3%t015% £ 288 ¢ 2 : 2 8 ¢ 8
26.3%t035% £ fef: o8l 8 8 °
[ T T T T T T
5% 10% 15% 20% 25% 30% 35%

Interest Rate

Figure 2.11: Dot plots of the original interest rate data and two modified data sets.

robust not robust
scenario median  IQR z s
original interest_rate data 9.93%  5.76% 11.57%  5.05%
move 26.3% — 15% 9.93%  5.76% 11.34%  4.61%
move 26.3% — 35% 9.93%  5.76% 11.74%  5.68%

Figure 2.12: A comparison of how the median, IQR, mean (z), and standard deviation
(s) change had an extreme observations from the interest_rate variable been different.

GUIDED PRACTICE 2.17

(a) Which is more affected by extreme observations, the mean or median? Figure 2.12 may be
helpful. (b) Is the standard deviation or IQR more affected by extreme observations?'”

The median and IQR are called robust statistics because extreme observations have little
effect on their values: moving the most extreme value generally has little influence on these statistics.
On the other hand, the mean and standard deviation are more heavily influenced by changes in
extreme observations, which can be important in some situations.

EXAMPLE 2.18

The median and IQR did not change under the three scenarios in Figure 2.12. Why might this be
the case?

The median and IQR are only sensitive to numbers near ()1, the median, and (3. Since values in
these regions are stable in the three data sets, the median and IQR estimates are also stable.

GUIDED PRACTICE 2.19

The distribution of loan amounts in the loan50 data set is right skewed, with a few large loans
lingering out into the right tail. If you were wanting to understand the typical loan size, should you
be more interested in the mean or median?'’

12(a) Mean is affected more. (b) Standard deviation is affected more. Complete explanations are provided in the
material following Guided Practice 2.17.

13 Answers will vary! If we’re looking to simply understand what a typical individual loan looks like, the median is
probably more useful. However, if the goal is to understand something that scales well, such as the total amount of
money we might need to have on hand if we were to offer 1,000 loans, then the mean would be more useful.
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2.1.7 Transforming data (special topic)

When data are very strongly skewed, we sometimes transform them so they are easier to model.
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Figure 2.13: (a) A histogram of the populations of all US counties. (b) A histogram
of logyg-transformed county populations. For this plot, the x-value corresponds to
the power of 10, e.g. “4” on the x-axis corresponds to 10* = 10,000.

EXAMPLE 2.20

Consider the histogram of county populations shown in Figure 2.13(a), which shows extreme skew.
What isn’t useful about this plot?

Nearly all of the data fall into the left-most bin, and the extreme skew obscures many of the
potentially interesting details in the data.

There are some standard transformations that may be useful for strongly right skewed data
where much of the data is positive but clustered near zero. A transformation is a rescaling of
the data using a function. For instance, a plot of the logarithm (base 10) of county populations
results in the new histogram in Figure 2.13(b). This data is symmetric, and any potential outliers
appear much less extreme than in the original data set. By reigning in the outliers and extreme
skew, transformations like this often make it easier to build statistical models against the data.

Transformations can also be applied to one or both variables in a scatterplot. A scatterplot of
the population change from 2010 to 2017 against the population in 2010 is shown in Figure 2.14(a).
In this first scatterplot, it’s hard to decipher any interesting patterns because the population variable
is so strongly skewed. However, if we apply a logig transformation to the population variable, as
shown in Figure 2.14(b), a positive association between the variables is revealed. In fact, we may
be interested in fitting a trend line to the data when we explore methods around fitting regression
lines in Chapter 8.

Transformations other than the logarithm can be useful, too. For instance, the square root
(v/original observation) and inverse (m) are commonly used by data scientists. Com-
mon goals in transforming data are to see the data structure differently, reduce skew, assist in
modeling, or straighten a nonlinear relationship in a scatterplot.
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Figure 2.14: (a) Scatterplot of population change against the population before
the change. (b) A scatterplot of the same data but where the population size has
been log-transformed.

2.1.8 Mapping data (special topic)

The county data set offers many numerical variables that we could plot using dot plots, scatter-
plots, or box plots, but these miss the true nature of the data. Rather, when we encounter geographic
data, we should create an intensity map, where colors are used to show higher and lower values
of a variable. Figures 2.15 and 2.16 shows intensity maps for poverty rate in percent (poverty),
unemployment rate (unemployment_rate), homeownership rate in percent (homeownership), and
median household income (median_hh_income). The color key indicates which colors correspond
to which values. The intensity maps are not generally very helpful for getting precise values in
any given county, but they are very helpful for seeing geographic trends and generating interesting
research questions or hypotheses.

EXAMPLE 2.21

What interesting features are evident in the poverty and unemployment_rate intensity maps?

Poverty rates are evidently higher in a few locations. Notably, the deep south shows higher poverty
rates, as does much of Arizona and New Mexico. High poverty rates are evident in the Mississippi
flood plains a little north of New Orleans and also in a large section of Kentucky.

The unemployment rate follows similar trends, and we can see correspondence between the two
variables. In fact, it makes sense for higher rates of unemployment to be closely related to poverty
rates. One observation that stand out when comparing the two maps: the poverty rate is much
higher than the unemployment rate, meaning while many people may be working, they are not
making enough to break out of poverty.

GUIDED PRACTICE 2.22

What interesting features are evident in the median_hh_income intensity map in Figure 2.16(h)?"*

14Note: answers will vary. There is some correspondence between high earning and metropolitan areas, where we
can see darker spots (higher median household income), though there are several exceptions. You might look for large
cities you are familiar with and try to spot them on the map as dark spots.
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Poverty

Unemployment Rate

Figure 2.15: (a) Intensity map of poverty rate (percent). (b) Map of the unem-
ployment rate (percent).
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(b)

Figure 2.16: (a) Intensity map of homeownership rate (percent). (b) Intensity map
of median household income ($1000s).

Homeownership Rate

Median Household Income

%)
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Exercises

2.1 Mammal life spans. Data were collected on life spans (in years) and gestation lengths (in days) for 62
mammals. A scatterplot of life span versus length of gestation is shown below."”

100+

(a) What type of an association is apparent be- 75-

tween life span and length of gestation?
(b) What type of an association would you ex-

pect to see if the axes of the plot were re-

versed, i.e. if we plotted length of gestation

Life Span (years)
a1
<

versus life span? 25 .
(c) Are life span and length of gestation inde- R . _:
pendent? Explain your reasoning. o %, i '
| T T T |
0 200 400 600

Gestation (days)

2.2 Associations. Indicate which of the plots show (a) a positive association, (b) a negative association,
or (c) no association. Also determine if the positive and negative associations are linear or nonlinear. Each

part may refer to more than one plot.

[ ]
Ny . N e
o %o . Qo & ® o0
o @ ° ° Qe
°, o?c)% (X R o8] 0o B0 °
S ® & o’ ° % S oo 2 °
° ° o °
(J
° ® e db o &
059@0% ° OQNDOOO v % O%OOO o ®
o%&osi” ° ° e o % . oooo@%o
déo(%%o@ ° 6’3@00000 ‘ M oo ©°
® ° o © ® o0 0@®
o° © OO o & ° %%
) Oo%o& LY
° 0 ° ©

M @ ® (4)

2.3 Reproducing bacteria. Suppose that there is only sufficient space and nutrients to support one million
bacterial cells in a petri dish. You place a few bacterial cells in this petri dish, allow them to reproduce freely,
and record the number of bacterial cells in the dish over time. Sketch a plot representing the relationship

between number of bacterial cells and time.

2.4 Office productivity. Office productivity is relatively low when the employees feel no stress about their
work or job security. However, high levels of stress can also lead to reduced employee productivity. Sketch
a plot to represent the relationship between stress and productivity.

2.5 Parameters and statistics. Identify which value represents the sample mean and which value represents

the claimed population mean.

(a) American households spent an average of about $52 in 2007 on Halloween merchandise such as costumes,
decorations and candy. To see if this number had changed, researchers conducted a new survey in 2008
before industry numbers were reported. The survey included 1,500 households and found that average
Halloween spending was $58 per household.

(b) The average GPA of students in 2001 at a private university was 3.37. A survey on a sample of 203
students from this university yielded an average GPA of 3.59 a decade later.

2.6 Sleeping in college. A recent article in a college newspaper stated that college students get an average
of 5.5 hrs of sleep each night. A student who was skeptical about this value decided to conduct a survey
by randomly sampling 25 students. On average, the sampled students slept 6.25 hours per night. Identify
which value represents the sample mean and which value represents the claimed population mean.

15T, Allison and D.V. Cicchetti. “Sleep in mammals: ecological and constitutional correlates”. In: Arch. Hydrobiol
75 (1975), p. 442.


http://www.openintro.org/redirect.php?go=textbook-mammal_sleep_1975&referrer=os4_pdf
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2.7 Days off at a mining plant. Workers at a particular mining site receive an average of 35 days paid
vacation, which is lower than the national average. The manager of this plant is under pressure from a
local union to increase the amount of paid time off. However, he does not want to give more days off to
the workers because that would be costly. Instead he decides he should fire 10 employees in such a way as
to raise the average number of days off that are reported by his employees. In order to achieve this goal,
should he fire employees who have the most number of days off, least number of days off, or those who have
about the average number of days off?

2.8 Medians and IQRs. For each part, compare distributions (1) and (2) based on their medians and IQRs.
You do not need to calculate these statistics; simply state how the medians and IQRs compare. Make sure
to explain your reasoning.

(a) (1)3,5,6,7,9 () (1)1,2,3,4,5
(2) 3, 5,6, 7, 20 (2) 6,7,8,09, 10

(b) (1) 3,5,6,7,9 (d) (1) 0, 10, 50, 60, 100
(2)3,5,7,8,9 (2) 0, 100, 500, 600, 1000

2.9 Means and SDs. For each part, compare distributions (1) and (2) based on their means and standard
deviations. You do not need to calculate these statistics; simply state how the means and the standard
deviations compare. Make sure to explain your reasoning. Hint: It may be useful to sketch dot plots of the
distributions.

(a) (1) 3,5,5,5,8, 11,11, 11, 13 (c) (1)0,2,4,6,8,10
(2) 3,5,5,5,8, 11, 11, 11, 20 (2) 20, 22, 24, 26, 28, 30
(b) (1) -20, 0, 0, 0, 15, 25, 30, 30 (d) (1) 100, 200, 300, 400, 500
(2) -40, 0, 0, 0, 15, 25, 30, 30 (2) 0, 50, 300, 550, 600

2.10 Mix-and-match. Describe the distribution in the histograms below and match them to the box plots.
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2.11  Air quality. Daily air quality is measured by the air quality index (AQI) reported by the Environ-
mental Protection Agency. This index reports the pollution level and what associated health effects might
be a concern. The index is calculated for five major air pollutants regulated by the Clean Air Act and takes
values from 0 to 300, where a higher value indicates lower air quality. AQI was reported for a sample of
91 days in 2011 in Durham, NC. The relative frequency histogram below shows the distribution of the AQI
values on these days.'"

0.2

(a) Estimate the median AQI value of this sample. 0.15-

(b) Would you expect the mean AQI value of this sample
to be higher or lower than the median? Explain your
reasoning.

(c) Estimate Q1, Q3, and IQR for the distribution.

(d) Would any of the days in this sample be considered
to have an unusually low or high AQI? Explain your
reasoning. 0--

0.1+

0.05+

J T T T T 1

10 20 30 40 50 60
Daily AQI

2.12 Median vs. mean. Estimate the median for the 400 observations shown in the histogram, and note
whether you expect the mean to be higher or lower than the median.

1
40 50 60 70 80 90 100

2.13 Histograms vs. box plots. Compare the two plots below. What characteristics of the distribution
are apparent in the histogram and not in the box plot? What characteristics are apparent in the box plot
but not in the histogram?

200 25 ﬁ
150 20
100 15

: 3 =
0 5

T T T 1

5 10 15 20 25

214 Facebook friends. Facebook data indicate that 50% of Facebook users have 100 or more friends,
and that the average friend count of users is 190. What do these findings suggest about the shape of the
distribution of number of friends of Facebook users?'”

2.15 Distributions and appropriate statistics, Part |. For each of the following, state whether you expect
the distribution to be symmetric, right skewed, or left skewed. Also specify whether the mean or median
would best represent a typical observation in the data, and whether the variability of observations would be
best represented using the standard deviation or IQR. Explain your reasoning.

(a) Number of pets per household.

(b) Distance to work, i.e. number of miles between work and home.

(c) Heights of adult males.

16US Environmental Protection Agency, AirData, 2011.
7Lars Backstrom. “Anatomy of Facebook”. In: Facebook Data Team’s Notes (2011).


http://www.openintro.org/redirect.php?go=textbook-airdata_2011&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=textbook-anatomy-of-facebook&referrer=os4_pdf
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2.16 Distributions and appropriate statistics, Part Il. For each of the following, state whether you expect
the distribution to be symmetric, right skewed, or left skewed. Also specify whether the mean or median
would best represent a typical observation in the data, and whether the variability of observations would be
best represented using the standard deviation or IQR. Explain your reasoning.

(a) Housing prices in a country where 25% of the houses cost below $350,000, 50% of the houses cost below
$450,000, 75% of the houses cost below $1,000,000 and there are a meaningful number of houses that
cost more than $6,000,000.

(b) Housing prices in a country where 25% of the houses cost below $300,000, 50% of the houses cost below
$600,000, 75% of the houses cost below $900,000 and very few houses that cost more than $1,200,000.

(¢) Number of alcoholic drinks consumed by college students in a given week. Assume that most of these
students don’t drink since they are under 21 years old, and only a few drink excessively.

(d) Annual salaries of the employees at a Fortune 500 company where only a few high level executives earn
much higher salaries than all the other employees.

2.17 Income at the coffee shop. The first histogram below shows the distribution of the yearly incomes of
40 patrons at a college coffee shop. Suppose two new people walk into the coffee shop: one making $225,000
and the other $250,000. The second histogram shows the new income distribution. Summary statistics are
also provided.

12
8
4
(1) (2)
0= T T T T n 40 42
$60k $62.5k $65k $67.5k $70k Min. 60,680 60,680
) Ist Qu. 63,620 63,710
Median 65,240 65,350
12 Mean 65,090 73,300
g 3rd Qu. 66,160 66,540
Max. 69,890 250,000
4 SD 2,122 37,321
0 1 1

[ T T T 1
$60k $110k $160k $210k $260k

)
(a) Would the mean or the median best represent what we might think of as a typical income for the 42

patrons at this coffee shop? What does this say about the robustness of the two measures?

(b) Would the standard deviation or the IQR best represent the amount of variability in the incomes of the
42 patrons at this coffee shop? What does this say about the robustness of the two measures?

2.18 Midrange. The midrange of a distribution is defined as the average of the maximum and the minimum
of that distribution. Is this statistic robust to outliers and extreme skew? Explain your reasoning

99
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2.19 Commute times. The US census collects data on time it takes Americans to commute to work, among
many other variables. The histogram below shows the distribution of average commute times in 3,142 US
counties in 2010. Also shown below is a spatial intensity map of the same data.

>33

10 20 30 40
Mean work travel (in min)

(a) Describe the numerical distribution and comment on whether or not a log transformation may be
advisable for these data.

(b) Describe the spatial distribution of commuting times using the map below.

2.20 Hispanic population. The US census collects data on race and ethnicity of Americans, among many
other variables. The histogram below shows the distribution of the percentage of the population that is
Hispanic in 3,142 counties in the US in 2010. Also shown is a histogram of logs of these values.
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(a) Describe the numerical distribution and comment on why we might want to use log-transformed values
in analyzing or modeling these data.

(b) What features of the distribution of the Hispanic population in US counties are apparent in the map
but not in the histogram? What features are apparent in the histogram but not the map?

(c) Is one visualization more appropriate or helpful than the other? Explain your reasoning.
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2.2 Considering categorical data

In this section, we will introduce tables and other basic tools for categorical data that are
used throughout this book. The loan50 data set represents a sample from a larger loan data set
called loans. This larger data set contains information on 10,000 loans made through Lending Club.
We will examine the relationship between homeownership, which for the loans data can take a value
of rent, mortgage (owns but has a mortgage), or own, and app_type, which indicates whether the
loan application was made with a partner or whether it was an individual application.

2.2.1 Contingency tables and bar plots

Figure 2.17 summarizes two variables: app-type and homeownership. A table that summarizes
data for two categorical variables in this way is called a contingency table. Each value in the table
represents the number of times a particular combination of variable outcomes occurred. For example,
the value 3496 corresponds to the number of loans in the data set where the borrower rents their
home and the application type was by an individual. Row and column totals are also included. The
row totals provide the total counts across each row (e.g. 3496 + 3839+ 1170 = 8505), and column
totals are total counts down each column. We can also create a table that shows only the overall
percentages or proportions for each combination of categories, or we can create a table for a single
variable, such as the one shown in Figure 2.18 for the homeownership variable.

homeownership
rent mortgage own  Total
individual 3496 3839 1170 8505
joint 362 950 183 1495
Total 3858 4789 1353 10000

app-type

Figure 2.17: A contingency table for app_type and homeownership.

homeownership Count

rent 3858
mortgage 4789
own 1353
Total 10000

Figure 2.18: A table summarizing the frequencies of each value for the
homeownership variable.

A bar plot is a common way to display a single categorical variable. The left panel of Figure 2.19
shows a bar plot for the homeownership variable. In the right panel, the counts are converted into
proportions, showing the proportion of observations that are in each level (e.g. 3858/10000 = 0.3858
for rent).
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Frequency
Proportion

rent mortgage own rent mortgage own

Homeownership Homeownership

Figure 2.19: Two bar plots of number. The left panel shows the counts, and the
right panel shows the proportions in each group.

2.2.2 Row and column proportions

Sometimes it is useful to understand the fractional breakdown of one variable in another, and we
can modify our contingency table to provide such a view. Figure 2.20 shows the row proportions
for Figure 2.17, which are computed as the counts divided by their row totals. The value 3496 at
the intersection of individual and rent is replaced by 3496/8505 = 0.411, i.e. 3496 divided by
its row total, 8505. So what does 0.411 represent? It corresponds to the proportion of individual
applicants who rent.

rent mortgage own Total

individual 0.411 0.451 0.138 1.000
joint 0.242 0.635 0.122 1.000
Total 0.386 0.479 0.135 1.000

Figure 2.20: A contingency table with row proportions for the app-type and
homeownership variables. The row total is off by 0.001 for the joint row due
to a rounding error.

A contingency table of the column proportions is computed in a similar way, where each column
proportion is computed as the count divided by the corresponding column total. Figure 2.21 shows
such a table, and here the value 0.906 indicates that 90.6% of renters applied as individuals for the
loan. This rate is higher compared to loans from people with mortgages (80.2%) or who own their
home (85.1%). Because these rates vary between the three levels of homeownership (rent, mortgage,
own), this provides evidence that the app_type and homeownership variables are associated.

rent mortgage own Total

individual  0.906 0.802 0.865 0.851
joint 0.094 0.198 0.135 0.150
Total 1.000 1.000 1.000 1.000

Figure 2.21: A contingency table with column proportions for the app_type and
homeownership variables. The total for the last column is off by 0.001 due to a
rounding error.

We could also have checked for an association between app_type and homeownership in Fig-
ure 2.20 using row proportions. When comparing these row proportions, we would look down
columns to see if the fraction of loans where the borrower rents, has a mortgage, or owns varied
across the individual to joint application types.
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GUIDED PRACTICE 2.23

(a) What does 0.451 represent in Figure 2.207
(b) What does 0.802 represent in Figure 2.217%

GUIDED PRACTICE 2.24

(a) What does 0.122 at the intersection of joint and own represent in Figure 2.207
(b) What does 0.135 represent in the Figure 2.21?%

EXAMPLE 2.25

Data scientists use statistics to filter spam from incoming email messages. By noting specific char-
acteristics of an email, a data scientist may be able to classify some emails as spam or not spam with
high accuracy. One such characteristic is whether the email contains no numbers, small numbers, or
big numbers. Another characteristic is the email format, which indicates whether or not an email
has any HTML content, such as bolded text. We’ll focus on email format and spam status using the
email data set, and these variables are summarized in a contingency table in Figure 2.22. Which
would be more helpful to someone hoping to classify email as spam or regular email for this table:
row or column proportions?

A data scientist would be interested in how the proportion of spam changes within each email
format. This corresponds to column proportions: the proportion of spam in plain text emails and
the proportion of spam in HTML emails.

If we generate the column proportions, we can see that a higher fraction of plain text emails are spam
(209/1195 = 17.5%) than compared to HTML emails (158/2726 = 5.8%). This information on its
own is insufficient to classify an email as spam or not spam, as over 80% of plain text emails are not
spam. Yet, when we carefully combine this information with many other characteristics, we stand a
reasonable chance of being able to classify some emails as spam or not spam with confidence.

text HTML Total

spam 209 158 367
not spam 986 2568 3554
Total 1195 2726 3921

Figure 2.22: A contingency table for spam and format.

Example 2.25 points out that row and column proportions are not equivalent. Before settling
on one form for a table, it is important to consider each to ensure that the most useful table is
constructed. However, sometimes it simply isn’t clear which, if either, is more useful.

EXAMPLE 2.26

Look back to Tables 2.20 and 2.21. Are there any obvious scenarios where one might be more useful
than the other?

None that we thought were obvious! What is distinct about app-type and homeownership vs the
email example is that these two variables don’t have a clear explanatory-response variable relation-
ship that we might hypothesize (see Section 1.2.4 for these terms). Usually it is most useful to
“condition” on the explanatory variable. For instance, in the email example, the email format was
seen as a possible explanatory variable of whether the message was spam, so we would find it more
interesting to compute the relative frequencies (proportions) for each email format.

18(a) 0.451 represents the proportion of individual applicants who have a mortgage. (b) 0.802 represents the
fraction of applicants with mortgages who applied as individuals.
19(a) 0.122 represents the fraction of joint borrowers who own their home. (b) 0.135 represents the home-owning

borrowers who had a joint application for the loan.
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2.2.3 Using a bar plot with two variables

Contingency tables using row or column proportions are especially useful for examining how
two categorical variables are related. Stacked bar plots provide a way to visualize the information
in these tables.

A stacked bar plot is a graphical display of contingency table information. For example,
a stacked bar plot representing Figure 2.21 is shown in Figure 2.23(a), where we have first created a
bar plot using the homeownership variable and then divided each group by the levels of app_type.

One related visualization to the stacked bar plot is the side-by-side bar plot, where an
example is shown in Figure 2.23(b).

For the last type of bar plot we introduce, the column proportions for the app_-type and
homeownership contingency table have been translated into a standardized stacked bar plot in
Figure 2.23(c). This type of visualization is helpful in understanding the fraction of individual
or joint loan applications for borrowers in each level of homeownership. Additionally, since the
proportions of joint and individual vary across the groups, we can conclude that the two variables
are associated.

O joint O joint
4000 - @ individual 2000 - @ individual
> 3000 - > 3000
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g g
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rent mortgage own rent mortgage own
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@ individual
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(c)

Figure 2.23: (a) Stacked bar plot for homeownership, where the counts have been
further broken down by app_type. (b) Side-by-side bar plot for homeownership
and app-type. (¢) Standardized version of the stacked bar plot.
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EXAMPLE 2.27

Examine the three bar plots in Figure 2.23. When is the stacked, side-by-side, or standardized
stacked bar plot the most useful?

The stacked bar plot is most useful when it’s reasonable to assign one variable as the explanatory
variable and the other variable as the response, since we are effectively grouping by one variable first
and then breaking it down by the others.

Side-by-side bar plots are more agnostic in their display about which variable, if any, represents the
explanatory and which the response variable. It is also easy to discern the number of cases in of the
six different group combinations. However, one downside is that it tends to require more horizontal
space; the narrowness of Figure 2.23(b) makes the plot feel a bit cramped. Additionally, when two
groups are of very different sizes, as we see in the own group relative to either of the other two
groups, it is difficult to discern if there is an association between the variables.

The standardized stacked bar plot is helpful if the primary variable in the stacked bar plot is relatively
imbalanced, e.g. the own category has only a third of the observations in the mortgage category,
making the simple stacked bar plot less useful for checking for an association. The major downside
of the standardized version is that we lose all sense of how many cases each of the bars represents.

2.2.4 Mosaic plots

A mosaic plot is a visualization technique suitable for contingency tables that resembles a
standardized stacked bar plot with the benefit that we still see the relative group sizes of the primary
variable as well.

To get started in creating our first mosaic plot, we’ll break a square into columns for each
category of the homeownership variable, with the result shown in Figure 2.24(a). Each column
represents a level of homeownership, and the column widths correspond to the proportion of loans
in each of those categories. For instance, there are fewer loans where the borrower is an owner than
where the borrower has a mortgage. In general, mosaic plots use box areas to represent the number
of cases in each category.

mortgage

(a) (b)

Figure 2.24: (a) The one-variable mosaic plot for homeownership. (b) Two-variable
mosaic plot for both homeownership and app-type.

To create a completed mosaic plot, the single-variable mosaic plot is further divided into pieces
in Figure 2.24(b) using the app_type variable. Each column is split proportional to the number
of loans from individual and joint borrowers. For example, the second column represents loans
where the borrower has a mortgage, and it was divided into individual loans (upper) and joint loans
(lower). As another example, the bottom segment of the third column represents loans where the
borrower owns their home and applied jointly, while the upper segment of this column represents
borrowers who are homeowners and filed individually. We can again use this plot to see that the
homeownership and app_type variables are associated, since some columns are divided in different
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vertical locations than others, which was the same technique used for checking an association in the

standardized stacked bar plot.

In Figure 2.25, we chose to first split by the homeowner status of the borrower. However, we
could have instead first split by the application type, as in Figure 2.25. Like with the bar plots, it’s
common to use the explanatory variable to represent the first split in a mosaic plot, and then for the
response to break up each level of the explanatory variable, if these labels are reasonable to attach

to the variables under consideration.
joint
- -.
o -I
o [ ]

Figure 2.25: Mosaic plot where loans are grouped by the homeownership variable
after they’ve been divided into the individual and joint application types.

indiv.

2.2.5 The only pie chart you will see in this book

A pie chart is shown in Figure 2.26 alongside a bar plot representing the same information.
Pie charts can be useful for giving a high-level overview to show how a set of cases break down.
However, it is also difficult to decipher details in a pie chart. For example, it takes a couple seconds
longer to recognize that there are more loans where the borrower has a mortgage than rent when
looking at the pie chart, while this detail is very obvious in the bar plot. While pie charts can be

useful, we prefer bar plots for their ease in comparing groups.

Frequency

own

mortgage

rent mortgage own

Homeownership

Figure 2.26: A pie chart and bar plot of homeownership.
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2.2.6 Comparing numerical data across groups

Some of the more interesting investigations can be considered by examining numerical data
across groups. The methods required here aren’t really new: all that’s required is to make a numerical
plot for each group in the same graph. Here two convenient methods are introduced: side-by-side
box plots and hollow histograms.

We will take a look again at the county data set and compare the median household income
for counties that gained population from 2010 to 2017 versus counties that had no gain. While we
might like to make a causal connection here, remember that these are observational data and so
such an interpretation would be, at best, half-baked.

There were 1,454 counties where the population increased from 2010 to 2017, and there were
1,672 counties with no gain (all but one were a loss). A random sample of 100 counties from the
first group and 50 from the second group are shown in Figure 2.27 to give a better sense of some of
the raw median income data.

Median Income for 150 Counties, in $1000s

Population Gain No Population Gain
38.2 43.6 422 61.5 51.1 45.7 48.3 60.3 50.7
44.6 51.8 40.7 48.1 56.4 419 39.3 40.4 40.3
40.6 63.3 52.1 60.3 49.8 51.7 57 47.2 45.9
51.1 34.1 455 52.8 49.1 51 42.3 41.5 46.1
80.8 46.3 82.2 43.6 39.7 494 44.9 51.7 46.4
75.2 40.6 46.3 62.4 44.1 51.3 29.1 51.8 50.5
51.9 34.7 54 429 522 45.1 27 30.9 34.9
61 514 56.5 62 46 464 40.7 51.8 61.1
53.8 57.6 69.2 484 40.5 486 43.4 34.7 45.7
53.1 54.6 55 464 39.9 56.7 33.1 21 37
63 49.1 57.2 44.1 50 38.9 52 31.9 45.7
46.6 46.5 38.9 50.9 56 34.6 56.3 38.7 45.7
742 63 49.6 53.7 775 60 56.2 43 21.7
63.2 47.6 559 39.1 57.8 426 44.5 34.5 48.9
50.4 49 456 39 38.8 37.1 50.9 42.1 43.2
57.2 447 71.7 353 100.2 354 41.3 33.6
42.6 555 38.6 52.7 63 43.4 56.5

Figure 2.27: In this table, median household income (in $1000s) from a random
sample of 100 counties that had population gains are shown on the left. Median
incomes from a random sample of 50 counties that had no population gain are
shown on the right.
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Figure 2.28: Side-by-side box plot (left panel) and hollow histograms (right panel)
for med_hh_income, where the counties are split by whether there was a population
gain or loss.

The side-by-side box plot is a traditional tool for comparing across groups. An example is
shown in the left panel of Figure 2.28, where there are two box plots, one for each group, placed
into one plotting window and drawn on the same scale.

Another useful plotting method uses hollow histograms to compare numerical data across
groups. These are just the outlines of histograms of each group put on the same plot, as shown in
the right panel of Figure 2.28.

GUIDED PRACTICE 2.28

Use the plots in Figure 2.28 to compare the incomes for counties across the two groups. What do
you notice about the approximate center of each group? What do you notice about the variability
between groups? Is the shape relatively consistent between groups? How many prominent modes
are there for each group??’

GUIDED PRACTICE 2.29
What components of each plot in Figure 2.28 do you find most useful??!

20 Answers may vary a little. The counties with population gains tend to have higher income (median of about
$45,000) versus counties without a gain (median of about $40,000). The variability is also slightly larger for the
population gain group. This is evident in the IQR, which is about 50% bigger in the gain group. Both distributions
show slight to moderate right skew and are unimodal. The box plots indicate there are many observations far above
the median in each group, though we should anticipate that many observations will fall beyond the whiskers when
examining any data set that contain more than a couple hundred data points.

21 Answers will vary. The side-by-side box plots are especially useful for comparing centers and spreads, while the
hollow histograms are more useful for seeing distribution shape, skew, and potential anomalies.
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Exercises

2.21 Antibiotic use in children. The bar plot and the pie chart below show the distribution of pre-existing
medical conditions of children involved in a study on the optimal duration of antibiotic use in treatment of
tracheitis, which is an upper respiratory infection.

Prematurity

. _ Traum:

Cardiovascular [N Neuromuscular

Respiratory [N Respiratory

Trauma _ Genetic/metabolic

Neuromuscular [ Immunocompromised

. . Gastrointestinal

Genetic/metabolic [T
Immunocomproml_sed B Cardiovascular
Gastrointestinal [l
i T T T T T T 1
0.00 0.10 0.20 0.30 Prematurity

Relative frequency

(a) What features are apparent in the bar plot but not in the pie chart?
(b) What features are apparent in the pie chart but not in the bar plot?
(¢) Which graph would you prefer to use for displaying these categorical data?

2.22 Views on immigration. 910 randomly sampled registered voters from Tampa, FL were asked if they
thought workers who have illegally entered the US should be (i) allowed to keep their jobs and apply for
US citizenship, (ii) allowed to keep their jobs as temporary guest workers but not allowed to apply for US
citizenship, or (iii) lose their jobs and have to leave the country. The results of the survey by political
ideology are shown below.””
Political ideology
Conservative  Moderate Liberal Total

(i) Apply for citizenship 57 120 101 278
Response (1) Guest worker 121 113 28 262
(iii) Leave the country 179 126 45 350
(iv) Not sure 15 4 1 20
Total 372 363 175 910

(a) What percent of these Tampa, FL voters identify themselves as conservatives?

(b) What percent of these Tampa, FL voters are in favor of the citizenship option?

(¢) What percent of these Tampa, FL voters identify themselves as conservatives and are in favor of the
citizenship option?

(d) What percent of these Tampa, FL voters who identify themselves as conservatives are also in favor of
the citizenship option? What percent of moderates share this view? What percent of liberals share this
view?

(e) Do political ideology and views on immigration appear to be independent? Explain your reasoning.

22QurveyUSA, News Poll #18927, data collected Jan 27-29, 2012.


http://www.openintro.org/redirect.php?go=textbook-SurveyUSA_18927&referrer=os4_pdf
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2.23 Views on the DREAM Act. A random sample of registered voters from Tampa, FL were asked
if they support the DREAM Act, a proposed law which would provide a path to citizenship for people
brought illegally to the US as children. The survey also collected information on the political ideology of the
respondents. Based on the mosaic plot shown below, do views on the DREAM Act and political ideology
appear to be independent? Explain your reasoning.”’

Conservative Moderate Liberal
- -
o -

2.24 Raise taxes. A random sample of registered voters nationally were asked whether they think it’s
better to raise taxes on the rich or raise taxes on the poor. The survey also collected information on the
political party affiliation of the respondents. Based on the mosaic plot shown below, do views on raising
taxes and political affiliation appear to be independent? Explain your reasoning.””

Democrat Republican Indep / Other

Raise taxes on the rich . -
| ———
I -

Raise taxes on the poor
Not sure

23SurveyUSA, News Poll #18927, data collected Jan 27-29, 2012.
24Public Policy Polling, Americans on College Degrees, Classic Literature, the Seasons, and More, data collected
Feb 20-22, 2015.


http://www.openintro.org/redirect.php?go=textbook-SurveyUSA_18927&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=textbook-PPP_30215&referrer=os4_pdf

2.3. CASE STUDY: MALARIA VACCINE

2.3 Case study: malaria vaccine

EXAMPLE 2.30

Suppose your professor splits the students in class into two groups: students on the left and students
on the right. If p, and p, represent the proportion of students who own an Apple product on the
left and right, respectively, would you be surprised if p, did not exactly equal p,?

While the proportions would probably be close to each other, it would be unusual for them to be
exactly the same. We would probably observe a small difference due to chance.

GUIDED PRACTICE 2.31

If we don’t think the side of the room a person sits on in class is related to whether the person
owns an Apple product, what assumption are we making about the relationship between these two
variables??°

2.3.1 Variability within data

We consider a study on a new malaria vaccine called PfSPZ. In this study, volunteer patients
were randomized into one of two experiment groups: 14 patients received an experimental vaccine
or 6 patients received a placebo vaccine. Nineteen weeks later, all 20 patients were exposed to a
drug-sensitive malaria virus strain; the motivation of using a drug-sensitive strain of virus here is for
ethical considerations, allowing any infections to be treated effectively. The results are summarized
in Figure 2.29, where 9 of the 14 treatment patients remained free of signs of infection while all of
the 6 patients in the control group patients showed some baseline signs of infection.

outcome
infection no infection Total
vaccine 5 9 14
t t t
reatmen placebo 6 0 6
Total 11 9 20

Figure 2.29: Summary results for the malaria vaccine experiment.

GUIDED PRACTICE 2.32

Is this an observational study or an experiment? What implications does the study type have on
what can be inferred from the results??°

In this study, a smaller proportion of patients who received the vaccine showed signs of an
infection (35.7% versus 100%). However, the sample is very small, and it is unclear whether the
difference provides convincing evidence that the vaccine is effective.

25We would be assuming that these two variables are independent.

26The study is an experiment, as patients were randomly assigned an experiment group. Since this is an experiment,
the results can be used to evaluate a causal relationship between the malaria vaccine and whether patients showed
signs of an infection.
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EXAMPLE 2.33

Data scientists are sometimes called upon to evaluate the strength of evidence. When looking at
the rates of infection for patients in the two groups in this study, what comes to mind as we try to
determine whether the data show convincing evidence of a real difference?

The observed infection rates (35.7% for the treatment group versus 100% for the control group)
suggest the vaccine may be effective. However, we cannot be sure if the observed difference represents
the vaccine’s efficacy or is just from random chance. Generally there is a little bit of fluctuation in
sample data, and we wouldn’t expect the sample proportions to be exactly equal, even if the truth
was that the infection rates were independent of getting the vaccine. Additionally, with such small
samples, perhaps it’s common to observe such large differences when we randomly split a group due
to chance alone!

Example 2.33 is a reminder that the observed outcomes in the data sample may not perfectly
reflect the true relationships between variables since there is random noise. While the observed
difference in rates of infection is large, the sample size for the study is small, making it unclear if
this observed difference represents efficacy of the vaccine or whether it is simply due to chance. We
label these two competing claims, Hy and H 4, which are spoken as “H-nought” and “H-A”:

Hy: Independence model. The variables treatment and outcome are independent. They have
no relationship, and the observed difference between the proportion of patients who developed
an infection in the two groups, 64.3%, was due to chance.

H,4: Alternative model. The variables are not independent. The difference in infection rates of
64.3% was not due to chance, and vaccine affected the rate of infection.

What would it mean if the independence model, which says the vaccine had no influence on the
rate of infection, is true? It would mean 11 patients were going to develop an infection no matter
which group they were randomized into, and 9 patients would not develop an infection no matter
which group they were randomized into. That is, if the vaccine did not affect the rate of infection,
the difference in the infection rates was due to chance alone in how the patients were randomized.

Now consider the alternative model: infection rates were influenced by whether a patient re-
ceived the vaccine or not. If this was true, and especially if this influence was substantial, we would
expect to see some difference in the infection rates of patients in the groups.

We choose between these two competing claims by assessing if the data conflict so much with
Hjy that the independence model cannot be deemed reasonable. If this is the case, and the data
support H 4, then we will reject the notion of independence and conclude there was discrimination.

2.3.2 Simulating the study

We’re going to implement simulations, where we will pretend we know that the malaria vaccine
being tested does not work. Ultimately, we want to understand if the large difference we observed
is common in these simulations. If it is common, then maybe the difference we observed was purely
due to chance. If it is very uncommon, then the possibility that the vaccine was helpful seems more
plausible.

Figure 2.29 shows that 11 patients developed infections and 9 did not. For our simulation,
we will suppose the infections were independent of the vaccine and we were able to rewind back
to when the researchers randomized the patients in the study. If we happened to randomize the
patients differently, we may get a different result in this hypothetical world where the vaccine doesn’t
influence the infection. Let’s complete another randomization using a simulation.
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In this simulation, we take 20 notecards to represent the 20 patients, where we write down
“infection” on 11 cards and “no infection” on 9 cards. In this hypothetical world, we believe each
patient that got an infection was going to get it regardless of which group they were in, so let’s see
what happens if we randomly assign the patients to the treatment and control groups again. We
thoroughly shuffle the notecards and deal 14 into a vaccine pile and 6 into a placebo pile. Finally,
we tabulate the results, which are shown in Figure 2.30.

outcome
infection no infection Total
treatment vaccine 7 7 14
(simulated) placebo 4 2 6
Total 11 9 20

Figure 2.30: Simulation results, where any difference in infection rates is purely
due to chance.

GUIDED PRACTICE 2.34

What is the difference in infection rates between the two simulated groups in Figure 2.307 How does
this compare to the observed 64.3% difference in the actual data??”

2.3.3 Checking for independence

We computed one possible difference under the independence model in Guided Practice 2.34,
which represents one difference due to chance. While in this first simulation, we physically dealt out
notecards to represent the patients, it is more efficient to perform this simulation using a computer.
Repeating the simulation on a computer, we get another difference due to chance:

2 9

And another:
3 8
S — Y
6 14 0.07

And so on until we repeat the simulation enough times that we have a good idea of what represents
the distribution of differences from chance alone. Figure 2.31 shows a stacked plot of the differences
found from 100 simulations, where each dot represents a simulated difference between the infection
rates (control rate minus treatment rate).

Note that the distribution of these simulated differences is centered around 0. We simulated
these differences assuming that the independence model was true, and under this condition, we
expect the difference to be near zero with some random fluctuation, where near is pretty generous
in this case since the sample sizes are so small in this study.

EXAMPLE 2.35

How often would you observe a difference of at least 64.3% (0.643) according to Figure 2.317 Often,
sometimes, rarely, or never?

It appears that a difference of at least 64.3% due to chance alone would only happen about 2% of
the time according to Figure 2.31. Such a low probability indicates a rare event.

274/6 — 7/14 = 0.167 or about 16.7% in favor of the vaccine. This difference due to chance is much smaller than
the difference observed in the actual groups.
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Figure 2.31: A stacked dot plot of differences from 100 simulations produced under
the independence model, Hy, where in these simulations infections are unaffected
by the vaccine. Two of the 100 simulations had a difference of at least 64.3%, the
difference observed in the study.

The difference of 64.3% being a rare event suggests two possible interpretations of the results
of the study:

Hy Independence model. The vaccine has no effect on infection rate, and we just happened to
observe a difference that would only occur on a rare occasion.

H, Alternative model. The vaccine has an effect on infection rate, and the difference we
observed was actually due to the vaccine being effective at combatting malaria, which explains
the large difference of 64.3%.

Based on the simulations, we have two options. (1) We conclude that the study results do not
provide strong evidence against the independence model. That is, we do not have sufficiently strong
evidence to conclude the vaccine had an effect in this clinical setting. (2) We conclude the evidence
is sufficiently strong to reject Hy and assert that the vaccine was useful. When we conduct formal
studies, usually we reject the notion that we just happened to observe a rare event.?® So in this case,
we reject the independence model in favor of the alternative. That is, we are concluding the data
provide strong evidence that the vaccine provides some protection against malaria in this clinical
setting.

One field of statistics, statistical inference, is built on evaluating whether such differences are
due to chance. In statistical inference, data scientists evaluate which model is most reasonable given
the data. Errors do occur, just like rare events, and we might choose the wrong model. While we
do not always choose correctly, statistical inference gives us tools to control and evaluate how often
these errors occur. In Chapter 5, we give a formal introduction to the problem of model selection.
We spend the next two chapters building a foundation of probability and theory necessary to make
that discussion rigorous.

28This reasoning does not generally extend to anecdotal observations. Each of us observes incredibly rare events
every day, events we could not possibly hope to predict. However, in the non-rigorous setting of anecdotal evidence,
almost anything may appear to be a rare event, so the idea of looking for rare events in day-to-day activities is
treacherous. For example, we might look at the lottery: there was only a 1 in 292 million chance that the Powerball
numbers for the largest jackpot in history (January 13th, 2016) would be (04, 08, 19, 27, 34) with a Powerball of
(10), but nonetheless those numbers came up! However, no matter what numbers had turned up, they would have
had the same incredibly rare odds. That is, any set of numbers we could have observed would ultimately be incredibly
rare. This type of situation is typical of our daily lives: each possible event in itself seems incredibly rare, but if we
consider every alternative, those outcomes are also incredibly rare. We should be cautious not to misinterpret such
anecdotal evidence.
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Exercises

2.25 Side effects of Avandia. Rosiglitazone is the active ingredient in the controversial type 2 diabetes
medicine Avandia and has been linked to an increased risk of serious cardiovascular problems such as stroke,
heart failure, and death. A common alternative treatment is pioglitazone, the active ingredient in a diabetes
medicine called Actos. In a nationwide retrospective observational study of 227,571 Medicare beneficiaries
aged 65 years or older, it was found that 2,593 of the 67,593 patients using rosiglitazone and 5,386 of
the 159,978 using pioglitazone had serious cardiovascular problems. These data are summarized in the
contingency table below.?’

Cardiovascular problems

Yes No Total

Treatment Rosiglitazone 2,593 65,000 67,593
Pioglitazone 5,386 154,592 159,978
Total 7,979 219,592 227,571

(a) Determine if each of the following statements is true or false. If false, explain why. Be careful: The
reasoning may be wrong even if the statement’s conclusion is correct. In such cases, the statement
should be considered false.

i. Since more patients on pioglitazone had cardiovascular problems (5,386 vs. 2,593), we can conclude
that the rate of cardiovascular problems for those on a pioglitazone treatment is higher.

ii. The data suggest that diabetic patients who are taking rosiglitazone are more likely to have cardio-
vascular problems since the rate of incidence was (2,593 / 67,593 = 0.038) 3.8% for patients on this
treatment, while it was only (5,386 / 159,978 = 0.034) 3.4% for patients on pioglitazone.

iii. The fact that the rate of incidence is higher for the rosiglitazone group proves that rosiglitazone
causes serious cardiovascular problems.

iv. Based on the information provided so far, we cannot tell if the difference between the rates of
incidences is due to a relationship between the two variables or due to chance.

(b) What proportion of all patients had cardiovascular problems?

(c) If the type of treatment and having cardiovascular problems were independent, about how many patients
in the rosiglitazone group would we expect to have had cardiovascular problems?

(d) We can investigate the relationship between outcome and treatment in this study using a randomization
technique. While in reality we would carry out the simulations required for randomization using statisti-
cal software, suppose we actually simulate using index cards. In order to simulate from the independence
model, which states that the outcomes were independent of the treatment, we write whether or not each
patient had a cardiovascular problem on cards, shuffled all the cards together, then deal them into two
groups of size 67,593 and 159,978. We repeat this simulation 1,000 times and each time record the num-
ber of people in the rosiglitazone group who had cardiovascular problems. Use the relative frequency
histogram of these counts to answer (i)-(iii).

0.2
i. What are the claims being tested?

ii. Compared to the number calculated in part (b),
which would provide more support for the alterna-
tive hypothesis, more or fewer patients with car- "
diovascular problems in the rosiglitazone group?

iii. What do the simulation results suggest about the
relationship between taking rosiglitazone and hav-
ing cardiovascular problems in diabetic patients?

I T T
2250 2350 2450
Simulated rosiglitazone cardiovascular events

29D.J. Graham et al. “Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare
patients treated with rosiglitazone or pioglitazone”. In: JAMA 304.4 (2010), p. 411. 1SSN: 0098-7484.
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2.26 Heart transplants. The Stanford University Heart Transplant Study was conducted to determine
whether an experimental heart transplant program increased lifespan. Each patient entering the program
was designated an official heart transplant candidate, meaning that he was gravely ill and would most likely
benefit from a new heart. Some patients got a transplant and some did not. The variable transplant
indicates which group the patients were in; patients in the treatment group got a transplant and those in the
control group did not. Of the 34 patients in the control group, 30 died. Of the 69 people in the treatment
group, 45 died. Another variable called survived was used to indicate whether or not the patient was alive
at the end of the study.”’
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(a) Based on the mosaic plot, is survival independent of whether or not the patient got a transplant? Explain
your reasoning.

(b) What do the box plots below suggest about the efficacy (effectiveness) of the heart transplant treatment.
¢) What proportion of patients in the treatment group and what proportion of patients in the control group
died?
(d) Ome approach for investigating whether or not the treatment is effective is to use a randomization
technique.

i. What are the claims being tested?

ii. The paragraph below describes the set up for such approach, if we were to do it without using
statistical software. Fill in the blanks with a number or phrase, whichever is appropriate.

We write alive on —__ cards representing patients who were alive at the end of
the study, and dead on ________ cards representing patients who were not. Then,
we shuffle these cards and split them into two groups: one group of size

representing treatment, and another group of size __ representing control. We
calculate the difference between the proportion of dead cards in the treatment and control
groups (treatment - control) and record this value. We repeat this 100 times to build a
distribution centered at . Lastly, we calculate the fraction of simulations
where the simulated differences in proportions are . If this fraction is low,
we conclude that it is unlikely to have observed such an outcome by chance and that the
null hypothesis should be rejected in favor of the alternative.

iii. What do the simulation results shown below suggest about the effectiveness of the transplant pro-
gram?

I T T T T T T T 1
-0.25 -0.15 -0.05 0.05 0.15 0.25
simulated differences in proportions

30B. Turnbull et al. “Survivorship of Heart Transplant Data”. In: Journal of the American Statistical Association
69 (1974), pp. 74-80.
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2.3. CASE STUDY: MALARIA VACCINE

Chapter exercises

2.27 Make-up exam. In a class of 25 students, 24 of them took an exam in class and 1 student took a
make-up exam the following day. The professor graded the first batch of 24 exams and found an average
score of 74 points with a standard deviation of 8.9 points. The student who took the make-up the following
day scored 64 points on the exam.

(a) Does the new student’s score increase or decrease the average score?

(b) What is the new average?

(c) Does the new student’s score increase or decrease the standard deviation of the scores?

2.28 Infant mortality. The infant mortality rate is defined as the number of infant deaths per 1,000 live
births. This rate is often used as an indicator of the level of health in a country. The relative frequency
histogram below shows the distribution of estimated infant death rates for 224 countries for which such data
were available in 2014.%!

©
~

(a) Estimate Q1, the median, and Q3 from the
histogram.

(b) Would you expect the mean of this data set
to be smaller or larger than the median?
Explain your reasoning.

o

Fraction of Countries
o o o
= N w

[ T

0 20 40 60 80 100 120

Infant Mortality (per 1000 Live Births)

2.29 TV watchers. Students in an AP Statistics class were asked how many hours of television they
watch per week (including online streaming). This sample yielded an average of 4.71 hours, with a standard
deviation of 4.18 hours. Is the distribution of number of hours students watch television weekly symmetric?
If not, what shape would you expect this distribution to have? Explain your reasoning.

2.30 A new statistic. The statistic —%— can be used as a measure of skewness. Suppose we have a

median

distribution where all observations are greater than 0, z; > 0. What is the expected shape of the distribution
under the following conditions? Explain your reasoning.

(a) med:fian =1
(b) me;ian <1
() =2—->1

median

2.31 Oscar winners. The first Oscar awards for best actor and best actress were given out in 1929. The
histograms below show the age distribution for all of the best actor and best actress winners from 1929 to
2018. Summary statistics for these distributions are also provided. Compare the distributions of ages of
best actor and actress winners.””

Best actress

50 Best Actress
‘3‘8 Mean 36.2
20 SD 11.9
0 n 92

0

Best actor

50
40
30 Best Actor
20 Mean 43.8
10 SD 8.83

0 n 92

20 40 60 80
Age (in years)

31CIA Factbook, Country Comparisons, 2014.
320scar winners from 1929 — 2012, data up to 2009 from the Journal of Statistics Education data archive and more
current data from wikipedia.org.
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2.32 Exam scores. The average on a history exam (scored out of 100 points) was 85, with a standard
deviation of 15. Is the distribution of the scores on this exam symmetric? If not, what shape would you
expect this distribution to have? Explain your reasoning.

2.33 Stats scores. Below are the final exam scores of twenty introductory statistics students.
57, 66, 69, 71, 72, 73, 74, 77, 78, 78, 79, 79, 81, 81, 82, 83, 83, 88, 89, 94

Create a box plot of the distribution of these scores. The five number summary provided below may be
useful.

Min Q1 Q2 (Median) Q3 Max
57 72.5 78.5 82.5 94

2.34 Marathon winners. The histogram and box plots below show the distribution of finishing times for
male and female winners of the New York Marathon between 1970 and 1999.

3.2 °

20 ]
2.8
0 2.0

r T T 1

2.0 2.4 2.8 3.2

(a) What features of the distribution are apparent in the histogram and not the box plot? What features
are apparent in the box plot but not in the histogram?

(b) What may be the reason for the bimodal distribution? Explain.

(c) Compare the distribution of marathon times for men and women based on the box plot shown below.

Men} W oe o0 o

Women

r T T 1

2.0 2.4 2.8 3.2

(d) The time series plot shown below is another way to look at these data. Describe what is visible in this
plot but not in the others.

3.2 x % * Women
%] + Men
£ -

;28 X %
c X
o
= xx x x X X x X x X % x X X x X
924 X X X x X X
o]
D T
2.0

1970 1975 1980 1985 1990 1995 2000
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Probability forms the foundation of statistics, and you’re probably
already aware of many of the ideas presented in this chapter. However,

formalization of probability concepts is likely new for most readers.

While this chapter provides a theoretical foundation for the ideas in
later chapters and provides a path to a deeper understanding, mastery
of the concepts introduced in this chapter is not required for applying
the methods introduced in the rest of this book.

Qo
D+

For videos, slides, and other resources, please visit

www.openintro.org/os
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3.1. DEFINING PROBABILITY

3.1 Defining probability

Statistics is based on probability, and while probability is not required for the applied techniques
in this book, it may help you gain a deeper understanding of the methods and set a better foundation
for future courses.

3.1.1 Introductory examples

Before we get into technical ideas, let’s walk through some basic examples that may feel more
familiar.

EXAMPLE 3.1

A “die”, the singular of dice, is a cube with six faces numbered 1, 2, 3, 4, 5, and 6. What is the
chance of getting 1 when rolling a die?

If the die is fair, then the chance of a 1 is as good as the chance of any other number. Since there
are six outcomes, the chance must be 1-in-6 or, equivalently, 1/6.

EXAMPLE 3.2
What is the chance of getting a 1 or 2 in the next roll?

1 and 2 constitute two of the six equally likely possible outcomes, so the chance of getting one of
these two outcomes must be 2/6 = 1/3.

EXAMPLE 3.3
What is the chance of getting either 1, 2, 3, 4, 5, or 6 on the next roll?

100%. The outcome must be one of these numbers.

EXAMPLE 3.4
What is the chance of not rolling a 27

Since the chance of rolling a 2 is 1/6 or 16.6%, the chance of not rolling a 2 must be 100% — 16.6% =
83.3% or 5/6.

Alternatively, we could have noticed that not rolling a 2 is the same as getting a 1, 3, 4, 5, or 6,
which makes up five of the six equally likely outcomes and has probability 5/6.

EXAMPLE 3.5

Consider rolling two dice. If 1/6 of the time the first die is a 1 and 1/6 of those times the second
die is a 1, what is the chance of getting two 1s?

If 16.6% of the time the first die is a 1 and 1/6 of those times the second die is also a 1, then the
chance that both dice are 1 is (1/6) x (1/6) or 1/36.
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3.1.2 Probability

We use probability to build tools to describe and understand apparent randomness. We often
frame probability in terms of a random process giving rise to an outcome.

Rolladie — 1,2,3,4,5 0r6
Flipacoin — HorT

Rolling a die or flipping a coin is a seemingly random process and each gives rise to an outcome.

PROBABILITY

The probability of an outcome is the proportion of times the outcome would occur if we
observed the random process an infinite number of times.

Probability is defined as a proportion, and it always takes values between 0 and 1 (inclusively).
It may also be displayed as a percentage between 0% and 100%.

Probability can be illustrated by rolling a die many times. Let p,, be the proportion of outcomes
that are 1 after the first n rolls. As the number of rolls increases, p,, will converge to the probability
of rolling a 1, p = 1/6. Figure 3.1 shows this convergence for 100,000 die rolls. The tendency of p,,
to stabilize around p is described by the Law of Large Numbers.

T T T 1
1 10 100 1,000 10,000 100,000

n (number of rolls)

Figure 3.1: The fraction of die rolls that are 1 at each stage in a simulation. The
proportion tends to get closer to the probability 1/6 ~ 0.167 as the number of rolls
increases.

LAW OF LARGE NUMBERS

As more observations are collected, the proportion p,, of occurrences with a particular outcome
converges to the probability p of that outcome.

Occasionally the proportion will veer off from the probability and appear to defy the Law of
Large Numbers, as p,, does many times in Figure 3.1. However, these deviations become smaller as
the number of rolls increases.

Above we write p as the probability of rolling a 1. We can also write this probability as

P(rolling a 1)

As we become more comfortable with this notation, we will abbreviate it further. For instance, if it
is clear that the process is “rolling a die”, we could abbreviate P(rolling a 1) as P(1).
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GUIDED PRACTICE 3.6

Random processes include rolling a die and flipping a coin. (a) Think of another random process.
(b) Describe all the possible outcomes of that process. For instance, rolling a die is a random process
with possible outcomes 1, 2, ..., 6.

What we think of as random processes are not necessarily random, but they may just be too
difficult to understand exactly. The fourth example in the footnote solution to Guided Practice 3.6
suggests a roommate’s behavior is a random process. However, even if a roommate’s behavior is not
truly random, modeling her behavior as a random process can still be useful.

3.1.3 Disjoint or mutually exclusive outcomes

Two outcomes are called disjoint or mutually exclusive if they cannot both happen. For
instance, if we roll a die, the outcomes 1 and 2 are disjoint since they cannot both occur. On the other
hand, the outcomes 1 and “rolling an odd number” are not disjoint since both occur if the outcome
of the roll is a 1. The terms disjoint and mutually exclusive are equivalent and interchangeable.

Calculating the probability of disjoint outcomes is easy. When rolling a die, the outcomes 1
and 2 are disjoint, and we compute the probability that one of these outcomes will occur by adding
their separate probabilities:

P(lor2)=P1)+P(2)=1/6+1/6=1/3

What about the probability of rolling a 1, 2, 3, 4, 5, or 67 Here again, all of the outcomes are
disjoint so we add the probabilities:

P(lor2or3or4orb5or6)
= P(1) + P(2) + P(3) + P(4) + P(5) + P(6)
=1/6+1/6+1/6+1/6+1/6+1/6=1

The Addition Rule guarantees the accuracy of this approach when the outcomes are disjoint.

ADDITION RULE OF DISJOINT OUTCOMES

If A; and A, represent two disjoint outcomes, then the probability that one of them occurs is
given by

P(Al or AQ) = P(Al) +P(A2)

If there are many disjoint outcomes Aj, ..., Ay, then the probability that one of these outcomes
will occur is

P(A1)+P(A2)+"'+P(Ak)

I Here are four examples. (i) Whether someone gets sick in the next month or not is an apparently random process
with outcomes sick and not. (ii) We can generate a random process by randomly picking a person and measuring
that person’s height. The outcome of this process will be a positive number. (iii) Whether the stock market goes up
or down next week is a seemingly random process with possible outcomes up, down, and no_change. Alternatively, we
could have used the percent change in the stock market as a numerical outcome. (iv) Whether your roommate cleans
her dishes tonight probably seems like a random process with possible outcomes cleans_dishes and leaves_dishes.
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GUIDED PRACTICE 3.7

We are interested in the probability of rolling a 1, 4, or 5. (a) Explain why the outcomes 1, 4, and
5 are disjoint. (b) Apply the Addition Rule for disjoint outcomes to determine P(1 or 4 or 5).”

GUIDED PRACTICE 3.8

In the loans data set in Chapter 2, the homeownership variable described whether the borrower
rents, has a mortgage, or owns her property. Of the 10,000 borrowers, 3858 rented, 4789 had a
mortgage, and 1353 owned their home.”

(a) Are the outcomes rent, mortgage, and own disjoint?

(b) Determine the proportion of loans with value mortgage and own separately.

(c) Use the Addition Rule for disjoint outcomes to compute the probability a randomly selected
loan from the data set is for someone who has a mortgage or owns her home.

Data scientists rarely work with individual outcomes and instead consider sets or collections
of outcomes. Let A represent the event where a die roll results in 1 or 2 and B represent the event
that the die roll is a 4 or a 6. We write A as the set of outcomes {1, 2} and B = {4, 6}. These
sets are commonly called events. Because A and B have no elements in common, they are disjoint
events. A and B are represented in Figure 3.2.

Figure 3.2: Three events, A, B, and D, consist of outcomes from rolling a die. A
and B are disjoint since they do not have any outcomes in common.

The Addition Rule applies to both disjoint outcomes and disjoint events. The probability that
one of the disjoint events A or B occurs is the sum of the separate probabilities:

P(Aor B)=P(A)+P(B)=1/34+1/3=2/3

GUIDED PRACTICE 3.9

(a) Verify the probability of event A, P(A), is 1/3 using the Addition Rule. (b) Do the same for
event B."

GUIDED PRACTICE 3.10

(a) Using Figure 3.2 as a reference, what outcomes are represented by event D? (b) Are events B
and D disjoint? (c) Are events A and D disjoint?”

GUIDED PRACTICE 3.11

In Guided Practice 3.10, you confirmed B and D from Figure 3.2 are disjoint. Compute the proba-
bility that event B or event D occurs.”

2(a) The random process is a die roll, and at most one of these outcomes can come up. This means they are
disjoint outcomes. (b) P(1or4or5) =P(1)+P(4)+ P(5)=¢t + s+t =2=1

3(a) Yes. Each loan is categorized in only one level of homeownership. (b) Mortgage: 140708090 = 0.479. Own:
110305030 =0.135. (c) P(mortgage or own) = P(mortgage) + P(own) = 0.479 + 0.135 = 0.614.

*a) P(A)=P(1or2)=P(1)+ P(2) =+ + ¢ = 2 = 1. (b) Similarly, P(B) = 1/3.

5(a) Outcomes 2 and 3. (b) Yes, events B and D are disjoint because they share no outcomes. (c) The events A

and D share an outcome in common, 2, and so are not disjoint.

6Since B and D are disjoint events, use the Addition Rule: P(B or D) = P(B) + P(D) = % + % =2
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3.1.4 Probabilities when events are not disjoint

Let’s consider calculations for two events that are not disjoint in the context of a regular deck
of 52 cards, represented in Figure 3.3. If you are unfamiliar with the cards in a regular deck, please
see the footnote.”

2% 3% 4% 5% 6% 7h 8% O&% 10& Jh Qb K& Ad
20 30 40 5O 80 7O 8% 90 100 IO Q0 KO A
20 30 40 50 60 70 80 90 100 JO Q0 KO AQO
26 36 46 S GA TA 8A OA 104 JA QA KA AN

Figure 3.3: Representations of the 52 unique cards in a deck.

GUIDED PRACTICE 3.12

(a) What is the probability that a randomly selected card is a diamond? (b) What is the probability
that a randomly selected card is a face card?®

Venn diagrams are useful when outcomes can be categorized as “in” or “out” for two or three
variables, attributes, or random processes. The Venn diagram in Figure 3.4 uses a circle to represent
diamonds and another to represent face cards. If a card is both a diamond and a face card, it falls
into the intersection of the circles. If it is a diamond but not a face card, it will be in part of the
left circle that is not in the right circle (and so on). The total number of cards that are diamonds is
given by the total number of cards in the diamonds circle: 10 + 3 = 13. The probabilities are also
shown (e.g. 10/52 = 0.1923).

Diamonds, 0.2500
A

There are also
30 cards that are
neither diamonds

nor face cards

~
Face cards, 0.2308

Figure 3.4: A Venn diagram for diamonds and face cards.

Let A represent the event that a randomly selected card is a diamond and B represent the
event that it is a face card. How do we compute P(A or B)? Events A and B are not disjoint — the
cards J<{, ¢, and K¢ fall into both categories — so we cannot use the Addition Rule for disjoint
events. Instead we use the Venn diagram. We start by adding the probabilities of the two events:

P(A) + P(B) = P(¢) + P(face card) = 13/52 + 12/52

"The 52 cards are split into four suits: & (club), ¢ (diamond), © (heart), # (spade). Each suit has its 13 cards
labeled: 2, 3, ..., 10, J (jack), Q (queen), K (king), and A (ace). Thus, each card is a unique combination of a suit and
a label, e.g. 40 and J&. The 12 cards represented by the jacks, queens, and kings are called face cards. The cards
that are ¢ or © are typically colored red while the other two suits are typically colored black.

8(a) There are 52 cards and 13 diamonds. If the cards are thoroughly shuffled, each card has an equal chance
of being drawn, so the probability that a randomly selected card is a diamond is P({) = 12 = 0.250. (b) Likewise,

52
there are 12 face cards, so P(face card) = L})% = % =0.231.
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However, the three cards that are in both events were counted twice, once in each probability. We
must correct this double counting:

P(A or B) = P({ or face card)
= P({) + P(face card) — P({ and face card)
— 13/52 + 12/52 — 3/52
=22/52 =11/26

This equation is an example of the General Addition Rule.

GENERAL ADDITION RULE

If A and B are any two events, disjoint or not, then the probability that at least one of them
will occur is

P(A or B) = P(A) + P(B) — P(A and B)

where P(A and B) is the probability that both events occur.

TIP: “or” is inclusive
When we write “or” in statistics, we mean “and/or” unless we explicitly state otherwise.
Thus, A or B occurs means A, B, or both A and B occur.

GUIDED PRACTICE 3.13

(a) If A and B are disjoint, describe why this implies P(A and B) = 0. (b) Using part (a), verify
that the General Addition Rule simplifies to the simpler Addition Rule for disjoint events if A and
B are disjoint.”

GUIDED PRACTICE 3.14

In the loans data set describing 10,000 loans, 1495 loans were from joint applications (e.g. a couple
applied together), 4789 applicants had a mortgage, and 950 had both of these characteristics. Create
a Venn diagram for this setup.'’

GUIDED PRACTICE 3.15

(a) Use your Venn diagram from Guided Practice 3.14 to determine the probability a randomly
drawn loan from the loans data set is from a joint application where the couple had a mortgage.
(b) What is the probability that the loan had either of these attributes?"!

9(a) If A and B are disjoint, A and B can never occur simultaneously. (b) If A and B are disjoint, then the last
P(A and B) term of in the General Addition Rule formula is 0 (see part (a)) and we are left with the Addition Rule
for disjoint events.

19Both the counts and corresponding probabilities (e.g. 3839/10000 = 0.384) applicant had a mortgage joint application
are shown. Notice that the number of loans represented in the left circle 3839
corresponds to 3839 + 950 = 4789, and the number represented in the right 0.384
circle is 950 4 545 = 1495. Other loans: 10000 — 3839 - 950 - 545 = 4666 (0.457)

11 (a) The solution is represented by the intersection of the two circles: 0.095. (b) This is the sum of the three
disjoint probabilities shown in the circles: 0.384 4+ 0.095 + 0.055 = 0.534 (off by 0.001 due to a rounding error).
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3.1.5 Probability distributions

A probability distribution is a table of all disjoint outcomes and their associated probabili-
ties. Figure 3.5 shows the probability distribution for the sum of two dice.

Dice sum 2 3 4 5 6 7 8 9 10 11 12
Probability + 2 2 4 2 & 5 4 3 2 L

Figure 3.5: Probability distribution for the sum of two dice.

RULES FOR PROBABILITY DISTRIBUTIONS

A probability distribution is a list of the possible outcomes with corresponding probabilities
that satisfies three rules:

1. The outcomes listed must be disjoint.
2. Each probability must be between 0 and 1.
3. The probabilities must total 1.

GUIDED PRACTICE 3.16

Figure 3.6 suggests three distributions for household income in the United States. Only one is
correct. Which one must it be? What is wrong with the other two?'”

Income Range | $0-25k  $25k-50k  $50k-100k  $100k+
(a) 0.18 0.39 0.33 0.16
b) | 038  -0.27 0.52 0.37
(¢ | 0.28 0.27 0.29 0.16

Figure 3.6: Proposed distributions of US household incomes (Guided Prac-
tice 3.16).

Chapter 1 emphasized the importance of plotting data to provide quick summaries. Probability
distributions can also be summarized in a bar plot. For instance, the distribution of US household

incomes is shown in Figure 3.7 as a bar plot. The probability distribution for the sum of two dice is
shown in Figure 3.5 and plotted in Figure 3.8.

Probability

$0-25k $25k-50k  $50k-100k  $100k+

US Household Incomes

Figure 3.7: The probability distribution of US household income.

12The probabilities of (a) do not sum to 1. The second probability in (b) is negative. This leaves (c), which sure

enough satisfies the requirements of a distribution. One of the three was said to be the actual distribution of US
household incomes, so it must be (c).
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0.15 -

0.10

Probability

0.05

0.00 -

T T 1
2 3 4 5 6 7 8 9 10 11 12
Dice Sum

Figure 3.8: The probability distribution of the sum of two dice.

In these bar plots, the bar heights represent the probabilities of outcomes. If the outcomes
are numerical and discrete, it is usually (visually) convenient to make a bar plot that resembles a
histogram, as in the case of the sum of two dice. Another example of plotting the bars at their
respective locations is shown in Figure 3.18 on page 115.

3.1.6 Complement of an event

Rolling a die produces a value in the set {1, 2, 3, 4, 5, 6}. This set of all possible outcomes
is called the sample space (S) for rolling a die. We often use the sample space to examine the
scenario where an event does not occur.

Let D = {2, 3} represent the event that the outcome of a die roll is 2 or 3. Then the com-
plement of D represents all outcomes in our sample space that are not in D, which is denoted
by D¢ = {1, 4, 5, 6}. That is, D¢ is the set of all possible outcomes not already included in D.
Figure 3.9 shows the relationship between D, D¢, and the sample space S.

Figure 3.9: Event D = {2, 3} and its complement, D¢ = {1, 4, 5, 6}. S represents
the sample space, which is the set of all possible outcomes.

GUIDED PRACTICE 3.17
(a) Compute P(D¢) = P(rolling a 1, 4, 5, or 6). (b) What is P(D) + P(D¢)?"*

GUIDED PRACTICE 3.18

Events A = {1, 2} and B = {4, 6} are shown in Figure 3.2 on page 84. (a) Write out what A° and
B¢ represent. (b) Compute P(A¢) and P(B¢). (c¢) Compute P(A) + P(A¢) and P(B) + P(B¢).""

13(a) The outcomes are disjoint and each has probability 1/6, so the total probability is 4/6 = 2/3. (b) We can
also see that P(D) = % —+ % =1/3. Since D and D¢ are disjoint, P(D) + P(D¢) = 1.

14Brief solutions: (a) A¢ = {3, 4, 5, 6} and B® = {1, 2, 3, 5}. (b) Noting that each outcome is disjoint, add the
individual outcome probabilities to get P(A¢) = 2/3 and P(B¢) = 2/3. (c¢) A and A€ are disjoint, and the same is
true of B and B¢. Therefore, P(A) + P(A¢) =1 and P(B) + P(B¢) = 1.
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A complement of an event A is constructed to have two very important properties: (i) every
possible outcome not in A is in A¢, and (ii) A and A° are disjoint. Property (i) implies
P(Aor A%) =1

That is, if the outcome is not in A, it must be represented in A°. We use the Addition Rule for
disjoint events to apply Property (ii):

P(A or A%) = P(A) + P(A°)

Combining the last two equations yields a very useful relationship between the probability of an
event and its complement.

COMPLEMENT

The complement of event A is denoted A€, and A€ represents all outcomes not in A. A and A°
are mathematically related:

P(A)+ P(A° =1, ie. P(A)=1-P(A°)

In simple examples, computing A or A€ is feasible in a few steps. However, using the complement
can save a lot of time as problems grow in complexity.

GUIDED PRACTICE 3.19

Let A represent the event where we roll two dice and their total is less than 12. (a) What does the
event A¢ represent? (b) Determine P(A¢) from Figure 3.5 on page 87. (c) Determine P(A)."”

GUIDED PRACTICE 3.20
Find the following probabilities for rolling two dice:'®

(a) The sum of the dice is not 6.

(b) The sum is at least 4. That is, determine the probability of the event B = {4, 5, ..., 12}.
(¢) The sum is no more than 10. That is, determine the probability of the event D = {2, 3, ..., 10}.

3.1.7 Independence

Just as variables and observations can be independent, random processes can be independent,
too. Two processes are independent if knowing the outcome of one provides no useful information
about the outcome of the other. For instance, flipping a coin and rolling a die are two independent
processes — knowing the coin was heads does not help determine the outcome of a die roll. On the
other hand, stock prices usually move up or down together, so they are not independent.

Example 3.5 provides a basic example of two independent processes: rolling two dice. We want
to determine the probability that both will be 1. Suppose one of the dice is red and the other white.
If the outcome of the red die is a 1, it provides no information about the outcome of the white die. We
first encountered this same question in Example 3.5 (page 81), where we calculated the probability
using the following reasoning: 1/6 of the time the red die is a 1, and 1/6 of those times the white die

15(a) The complement of A: when the total is equal to 12. (b) P(A°) = 1/36. (c) Use the probability of the
complement from part (b), P(A°) = 1/36, and the equation for the complement: P(less than 12) = 1 — P(12) =
1—1/36 = 35/36.

16(a) First find P(6) = 5/36, then use the complement: P(not 6) = 1 — P(6) = 31/36.

(b) First find the complement, which requires much less effort: P(2 or 3) = 1/36 4+ 2/36 = 1/12. Then calculate
P(B)=1-P(B°) =1-1/12=11/12.

(¢) As before, finding the complement is the clever way to determine P(D). First find P(D¢) = P(11 or 12) =
2/36 4+ 1/36 = 1/12. Then calculate P(D) =1 — P(D¢) = 11/12.
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will also be 1. This is illustrated in Figure 3.10. Because the rolls are independent, the probabilities
of the corresponding outcomes can be multiplied to get the final answer: (1/6) x (1/6) = 1/36. This
can be generalized to many independent processes.

All rolls

| | 1/6th of the first
: ' rolls are a 1.

1/6th of those times where

- the first roll is a 1 the
second roll is also a 1.

Figure 3.10: 1/6 of the time, the first roll is a 1. Then 1/6 of those times, the
second roll will also be a 1.

EXAMPLE 3.21

What if there was also a blue die independent of the other two? What is the probability of rolling
the three dice and getting all 1s?

The same logic applies from Example 3.5. If 1/36 of the time the white and red dice are both 1,
then 1/6 of those times the blue die will also be 1, so multiply:

P(white = 1 and red = 1 and blue = 1) = P(white = 1) X P(red = 1) x P(blue = 1)
=(1/6) x (1/6) x (1/6) = 1/216

Example 3.21 illustrates what is called the Multiplication Rule for independent processes.

MULTIPLICATION RULE FOR INDEPENDENT PROCESSES

If A and B represent events from two different and independent processes, then the probability
that both A and B occur can be calculated as the product of their separate probabilities:

P(A and B) = P(A) x P(B)

Similarly, if there are k events Ay, ..., Ay from k independent processes, then the probability
they all occur is

P(A;) X P(A3) x -+ x P(Ag)

GUIDED PRACTICE 3.22

About 9% of people are left-handed. Suppose 2 people are selected at random from the U.S. pop-
ulation. Because the sample size of 2 is very small relative to the population, it is reasonable to
assume these two people are independent. (a) What is the probability that both are left-handed?
(b) What is the probability that both are right-handed?'”

17(a) The probability the first person is left-handed is 0.09, which is the same for the second person. We apply the
Multiplication Rule for independent processes to determine the probability that both will be left-handed: 0.09x0.09 =
0.0081.

(b) It is reasonable to assume the proportion of people who are ambidextrous (both right- and left-handed) is nearly
0, which results in P(right-handed) = 1 — 0.09 = 0.91. Using the same reasoning as in part (a), the probability that
both will be right-handed is 0.91 x 0.91 = 0.8281.
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GUIDED PRACTICE 3.23
Suppose 5 people are selected at random.'®
(a) What is the probability that all are right-handed?
(b) What is the probability that all are left-handed?
(c) What is the probability that not all of the people are right-handed?

Suppose the variables handedness and sex are independent, i.e. knowing someone’s sex pro-
vides no useful information about their handedness and vice-versa. Then we can compute whether
a randomly selected person is right-handed and female'? using the Multiplication Rule:

P(right-handed and female) = P(right-handed) x P(female)
=0.91 x 0.50 = 0.455

GUIDED PRACTICE 3.24
Three people are selected at random.?"

(a) What is the probability that the first person is male and right-handed?

(b) What is the probability that the first two people are male and right-handed?.
(c) What is the probability that the third person is female and left-handed?
)

(d) What is the probability that the first two people are male and right-handed and the third
person is female and left-handed?

Sometimes we wonder if one outcome provides useful information about another outcome. The
question we are asking is, are the occurrences of the two events independent? We say that two
events A and B are independent if they satisfy P(A and B) = P(A) x P(B).

EXAMPLE 3.25

If we shuffle up a deck of cards and draw one, is the event that the card is a heart independent of
the event that the card is an ace?

The probability the card is a heart is 1/4 and the probability that it is an ace is 1/13. The probability
the card is the ace of hearts is 1/52. We check whether P(A and B) = P(A) x P(B) is satisfied:

1 1 1
(V) x P(ace) 1538 (V and ace)
Because the equation holds, the event that the card is a heart and the event that the card is an ace

are independent events.

18(a) The abbreviations RH and LH are used for right-handed and left-handed, respectively. Since each are indepen-
dent, we apply the Multiplication Rule for independent processes:
P(all five are RH) = P(first = RH, second = RH, ..., fifth = RH)
= P(first = RH) X P(second = RH) x - -- x P(fifth = RH)
=0.91 x 0.91 x 0.91 x 0.91 x 0.91 = 0.624

(b) Using the same reasoning as in (a), 0.09 x 0.09 x 0.09 x 0.09 x 0.09 = 0.0000059
(c) Use the complement, P(all five are RH), to answer this question:

P(not all RH) = 1 — P(all RH) = 1 — 0.624 = 0.376

19The actual proportion of the U.S. population that is female is about 50%, and so we use 0.5 for the probability
of sampling a woman. However, this probability does differ in other countries.

20Brief answers are provided. (a) This can be written in probability notation as P(a randomly selected person is
male and right-handed) = 0.455. (b) 0.207. (c) 0.045. (d) 0.0093.
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Exercises

3.1 True or false. Determine if the statements below are true or false, and explain your reasoning.

(a) If a fair coin is tossed many times and the last eight tosses are all heads, then the chance that the next
toss will be heads is somewhat less than 50%.

(b) Drawing a face card (jack, queen, or king) and drawing a red card from a full deck of playing cards are
mutually exclusive events.

(c) Drawing a face card and drawing an ace from a full deck of playing cards are mutually exclusive events.

3.2 Roulette wheel. The game of roulette involves spinning a wheel with 38 slots: 18 red, 18 black, and 2
green. A ball is spun onto the wheel and will eventually land in a slot, where each slot has an equal chance
of capturing the ball.

(a) You watch a roulette wheel spin 3 consecutive times and the ball
lands on a red slot each time. What is the probability that the
ball will land on a red slot on the next spin?

(b) You watch a roulette wheel spin 300 consecutive times and the
ball lands on a red slot each time. What is the probability that
the ball will land on a red slot on the next spin?

(c) Are you equally confident of your answers to parts (a) and (b)? Photo by Hikan Dahlstrém
Why or why not? (http://flic.kr/p/93fEzp)
CC BY 2.0 license

3.3 Four games, one winner. Below are four versions of the same game. Your archnemesis gets to pick
the version of the game, and then you get to choose how many times to flip a coin: 10 times or 100 times.
Identify how many coin flips you should choose for each version of the game. It costs $1 to play each game.
Explain your reasoning.

(a) If the proportion of heads is larger than 0.60, you win $1.

(b) If the proportion of heads is larger than 0.40, you win $1.

(c¢) If the proportion of heads is between 0.40 and 0.60, you win $1.

(d) If the proportion of heads is smaller than 0.30, you win $1.

3.4 Backgammon. Backgammon is a board game for two players in which the playing pieces are moved
according to the roll of two dice. Players win by removing all of their pieces from the board, so it is usually
good to roll high numbers. You are playing backgammon with a friend and you roll two 6s in your first
roll and two 6s in your second roll. Your friend rolls two 3s in his first roll and again in his second row.
Your friend claims that you are cheating, because rolling double 6s twice in a row is very unlikely. Using
probability, show that your rolls were just as likely as his.

3.5 Coin flips. If you flip a fair coin 10 times, what is the probability of

(a) getting all tails?
(b) getting all heads?
(c) getting at least one tails?

3.6 Dice rolls. If you roll a pair of fair dice, what is the probability of

a) getting a sum of 17

getting a sum of 127

(a)
(b) getting a sum of 57?
(c)


http://www.openintro.org/redirect.php?go=textbook-flickr_hakan_dahlstrom_roulette_wheel&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=textbook-CC_BY_2&referrer=os4_pdf
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3.7 Swing voters. A Pew Research survey asked 2,373 randomly sampled registered voters their political
affiliation (Republican, Democrat, or Independent) and whether or not they identify as swing voters. 35%
of respondents identified as Independent, 23% identified as swing voters, and 11% identified as both.?'

—

a
b

Are being Independent and being a swing voter disjoint, i.e. mutually exclusive?

—~

Draw a Venn diagram summarizing the variables and their associated probabilities.

c) What percent of voters are Independent but not swing voters?

o~

e
f

)
)
)
d) What percent of voters are Independent or swing voters?
) What percent of voters are neither Independent nor swing voters?
)

—_

Is the event that someone is a swing voter independent of the event that someone is a political Indepen-
dent?

3.8 Poverty and language. The American Community Survey is an ongoing survey that provides data
every year to give communities the current information they need to plan investments and services. The
2010 American Community Survey estimates that 14.6% of Americans live below the poverty line, 20.7%
speak a language other than English (foreign language) at home, and 4.2% fall into both categories.

a) Are living below the poverty line and speaking a foreign language at home disjoint?

(c

(

(b) Draw a Venn diagram summarizing the variables and their associated probabilities.
) What percent of Americans live below the poverty line and only speak English at home?

(d) What percent of Americans live below the poverty line or speak a foreign language at home?
)
)

(e
(f

What percent of Americans live above the poverty line and only speak English at home?

Is the event that someone lives below the poverty line independent of the event that the person speaks
a foreign language at home?

3.9 Disjoint vs. independent. In parts (a) and (b), identify whether the events are disjoint, independent,
or neither (events cannot be both disjoint and independent).

(a) You and a randomly selected student from your class both earn A’s in this course.

(b) You and your class study partner both earn A’s in this course.

(c) If two events can occur at the same time, must they be dependent?

3.10 Guessing on an exam. In a multiple choice exam, there are 5 questions and 4 choices for each
question (a, b, ¢, d). Nancy has not studied for the exam at all and decides to randomly guess the answers.
What is the probability that:

(a) the first question she gets right is the 5" question?

(b) she gets all of the questions right?

(c) she gets at least one question right?

21Pew Research Center, With Voters Focused on Economy, Obama Lead Narrows, data collected between April
4-15, 2012.

221U.S. Census Bureau, 2010 American Community Survey 1-Year Estimates, Characteristics of People by Language
Spoken at Home.


http://www.openintro.org/redirect.php?go=textbook-obama_economy_pew_2012&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=textbook-acs_language_2010&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=textbook-acs_language_2010&referrer=os4_pdf
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3.11  Educational attainment of couples. The table below shows the distribution of education level
attained by US residents by gender based on data collected in the 2010 American Community Survey.”

—~ o~
T o
=

—
o

~

g

Gender
Male Female
Less than 9th grade 0.07 0.13
9th to 12th grade, no diploma 0.10 0.09
Highest HS graduate (or equivalent) 0.30 0.20
education  Some college, no degree 0.22 0.24
attained Associate’s degree 0.06 0.08
Bachelor’s degree 0.16 0.17
Graduate or professional degree 0.09 0.09
Total 1.00 1.00

What is the probability that a randomly chosen man has at least a Bachelor’s degree?
What is the probability that a randomly chosen woman has at least a Bachelor’s degree?

What is the probability that a man and a woman getting married both have at least a Bachelor’s degree?
Note any assumptions you must make to answer this question.

(d) If you made an assumption in part (c), do you think it was reasonable? If you didn’t make an assumption,

double check your earlier answer and then return to this part.

3.12 School absences. Data collected at elementary schools in DeKalb County, GA suggest that each
year roughly 25% of students miss exactly one day of school, 15% miss 2 days, and 28% miss 3 or more days
due to sickness.**

(a) What is the probability that a student chosen at random doesn’t miss any days of school due to sickness

(b)

this year?
What is the probability that a student chosen at random misses no more than one day?
What is the probability that a student chosen at random misses at least one day?

If a parent has two kids at a DeKalb County elementary school, what is the probability that neither kid
will miss any school? Note any assumption you must make to answer this question.

(e) If a parent has two kids at a DeKalb County elementary school, what is the probability that both kids

will miss some school, i.e. at least one day? Note any assumption you make.

(f) If you made an assumption in part (d) or (e), do you think it was reasonable? If you didn’t make any

assumptions, double check your earlier answers.

23U.S. Census Bureau, 2010 American Community Survey 1-Year Estimates, Educational Attainment.
248.S. Mizan et al. “Absence, Extended Absence, and Repeat Tardiness Related to Asthma Status among Elemen-

tary School Children”. In: Journal of Asthma 48.3 (2011), pp. 228-234.


http://www.openintro.org/redirect.php?go=textbook-acs_educational_2010&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=textbook-tardiness_asthma_2011&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=textbook-tardiness_asthma_2011&referrer=os4_pdf
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3.2 Conditional probability

There can be rich relationships between two or more variables that are useful to understand.
For example a car insurance company will consider information about a person’s driving history to
assess the risk that they will be responsible for an accident. These types of relationships are the
realm of conditional probabilities.

3.2.1 Exploring probabilities with a contingency table

The photo_classify data set represents a classifier a sample of 1822 photos from photo sharing
website. Data scientists have been working to improve a classifier for whether the photo is about
fashion or not, and these 659 photos represent a test for their classifier. Each photo gets two
classifications: the first is called mach_learn and gives a classification from a machine learning (ML)
system of either pred_fashion or pred_not. Each of these 1822 photos have also been classified
carefully by a team of people, which we take to be the source of truth; this variable is called truth
and takes values fashion and not. Figure 3.11 summarizes the results.

truth
fashion mnot  Total
nach. learn pred_fashion 197 22 219
pred_not 112 1491 1603
Total 309 1513 1822

Figure 3.11: Contingency table summarizing the photo_classify data set.

Fashion Photos

..........................

0.11 )
R e — =

ML Predicts Fashion

Neither: 0.82

Figure 3.12: A Venn diagram using boxes for the photo_classify data set.

EXAMPLE 3.26

If a photo is actually about fashion, what is the chance the ML classifier correctly identified the
photo as being about fashion?

We can estimate this probability using the data. Of the 309 fashion photos, the ML algorithm
correctly classified 197 of the photos:

19
P(mach_learn is pred_fashion given truth is fashion) = 300 = 0.638

95
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EXAMPLE 3.27

We sample a photo from the data set and learn the ML algorithm predicted this photo was not
about fashion. What is the probability that it was incorrect and the photo is about fashion?

@ If the ML classifier suggests a photo is not about fashion, then it comes from the second row in the
data set. Of these 1603 photos, 112 were actually about fashion:

112
P(truth is fashion given mach_learn is pred_not) = 1603 = 0.070

3.2.2 Marginal and joint probabilities

Figure 3.11 includes row and column totals for each variable separately in the photo_classify
data set. These totals represent marginal probabilities for the sample, which are the probabilities
based on a single variable without regard to any other variables. For instance, a probability based
solely on the mach_learn variable is a marginal probability:

219
P(mach_learn is pred_fashion) = 1803 = 0.12

A probability of outcomes for two or more variables or processes is called a joint probability:

197
P(mach_learn is pred_fashion and truth is fashion) = 182 = 0.11

It is common to substitute a comma for “and” in a joint probability, although using either the word
“and” or a comma is acceptable:

P(mach_learn is pred_fashion, truth is fashion)
means the same thing as

P(mach_learn is pred_fashion and truth is fashion)

MARGINAL AND JOINT PROBABILITIES

If a probability is based on a single variable, it is a marginal probability. The probability of
outcomes for two or more variables or processes is called a joint probability.

We use table proportions to summarize joint probabilities for the photo_classify sample.
These proportions are computed by dividing each count in Figure 3.11 by the table’s total, 1822,
to obtain the proportions in Figure 3.13. The joint probability distribution of the mach_learn and
truth variables is shown in Figure 3.14.

truth: fashion truth: not Total

mach_learn: pred_fashion 0.1081 0.0121 0.1202
mach_learn: pred_not 0.0615 0.8183 0.8798
Total 0.1696 0.8304 1.00

Figure 3.13: Probability table summarizing the photo_classify data set.
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Joint outcome Probability
mach_learn is pred_fashion and truth is fashion 0.1081
mach_learn is pred_fashion and truth is not 0.0121
mach_learn is pred_not and truth is fashion 0.0615
mach_learn is pred_not and truth is not 0.8183
Total 1.0000

Figure 3.14: Joint probability distribution for the photo_classify data set.

GUIDED PRACTICE 3.28

Verify Figure 3.14 represents a probability distribution: events are disjoint, all probabilities are
non-negative, and the probabilities sum to 1.%°

We can compute marginal probabilities using joint probabilities in simple cases. For example,
the probability a randomly selected photo from the data set is about fashion is found by summing
the outcomes where truth takes value fashion:

P(truth is fashion) = P(mach_learn is pred_fashion and truth is fashion)

+ P(mach_learn is pred_not and truth is fashion)
= 0.1081 + 0.0615
= 0.1696

3.2.3 Defining conditional probability

The ML classifier predicts whether a photo is about fashion, even if it is not perfect. We would
like to better understand how to use information from a variable like mach_learn to improve our
probability estimation of a second variable, which in this example is truth.

The probability that a random photo from the data set is about fashion is about 0.17. If we
knew the machine learning classifier predicted the photo was about fashion, could we get a better
estimate of the probability the photo is actually about fashion? Absolutely. To do so, we limit our
view to only those 219 cases where the ML classifier predicted that the photo was about fashion and
look at the fraction where the photo was actually about fashion:

P(truth is fashion given mach_learn is pred_fashion) = % = 0.900
We call this a conditional probability because we computed the probability under a condition:
the ML classifier prediction said the photo was about fashion.
There are two parts to a conditional probability, the outcome of interest and the condition.
It is useful to think of the condition as information we know to be true, and this information usually
can be described as a known outcome or event. We generally separate the text inside our probability
notation into the outcome of interest and the condition with a vertical bar:

P(truth is fashion given mach_learn is pred_fashion)

1
= P(truth is fashion | mach_learn is pred_fashion) = 219 = 0.900

The vertical bar

“|77

is read as given.

25Each of the four outcome combination are disjoint, all probabilities are indeed non-negative, and the sum of the
probabilities is 0.1081 4 0.0121 + 0.0615 + 0.8183 = 1.00.
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In the last equation, we computed the probability a photo was about fashion based on the
condition that the ML algorithm predicted it was about fashion as a fraction:

P(truth is fashion | mach_learn is pred_fashion)

# cases where truth is fashion and mach_learn is pred_fashion

# cases where mach_learn is pred_fashion
197
=509 = 0.900
We considered only those cases that met the condition, mach_learn is pred_fashion, and then we
computed the ratio of those cases that satisfied our outcome of interest, photo was actually about
fashion.

Frequently, marginal and joint probabilities are provided instead of count data. For example,
disease rates are commonly listed in percentages rather than in a count format. We would like to
be able to compute conditional probabilities even when no counts are available, and we use the last
equation as a template to understand this technique.

We considered only those cases that satisfied the condition, where the ML algorithm predicted
fashion. Of these cases, the conditional probability was the fraction representing the outcome of
interest, that the photo was about fashion. Suppose we were provided only the information in Fig-
ure 3.13, i.e. only probability data. Then if we took a sample of 1000 photos, we would anticipate
about 12.0% or 0.120 x 1000 = 120 would be predicted to be about fashion (mach_learn is pred._
fashion). Similarly, we would expect about 10.8% or 0.108 x 1000 = 108 to meet both the in-
formation criteria and represent our outcome of interest. Then the conditional probability can be
computed as

P(truth is fashion | mach_learn is pred_fashion)

_ # (truth is fashion and mach_learn is pred fashion)

# (mach_learn is pred_fashion)

108  0.108
T 120 0.120 0-90

Here we are examining exactly the fraction of two probabilities, 0.108 and 0.120, which we can write
as

P(truth is fashion and mach_learn is pred_fashion) and P(mach_learn is pred_fashion).

The fraction of these probabilities is an example of the general formula for conditional probability.

CONDITIONAL PROBABILITY
The conditional probability of outcome A given condition B is computed as the following:

P(A and B)

P(AIB) = =555

GUIDED PRACTICE 3.29

(a) Write out the following statement in conditional probability notation: “The probability that the
ML prediction was correct, if the photo was about fashion”. Here the condition is now based on the
photo’s truth status, not the ML algorithm.

(b) Determine the probability from part (a). Table 3.13 on page 96 may be helpful.?

26(a) If the photo is about fashion and the ML algorithm prediction was correct, then the ML algorithm my have
a value of pred_fashion:

P(mach_learn is pred_fashion | truth is fashion)

(b) The equation for conditional probability indicates we should first find
P(mach_learn is pred_fashion and truth is fashion) = 0.1081 and P(truth is not) = 0.1696.
Then the ratio represents the conditional probability: 0.1081/0.1696 = 0.6374.
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GUIDED PRACTICE 3.30
(a) Determine the probability that the algorithm is incorrect if it is known the photo is about fashion.

(b) Using the answers from part (a) and Guided Practice 3.29(b), compute

P(mach_learn is pred_fashion | truth is fashion)

+ P(mach_learn is pred_not | truth is fashion)

(c) Provide an intuitive argument to explain why the sum in (b) is 1.%"

3.2.4 Smallpox in Boston, 1721

The smallpox data set provides a sample of 6,224 individuals from the year 1721 who were
exposed to smallpox in Boston. Doctors at the time believed that inoculation, which involves
exposing a person to the disease in a controlled form, could reduce the likelihood of death.

Each case represents one person with two variables: inoculated and result. The variable
inoculated takes two levels: yes or no, indicating whether the person was inoculated or not. The
variable result has outcomes lived or died. These data are summarized in Tables 3.15 and 3.16.

inoculated
yes no Total
result lived 238 5136 5374
died 6 844 850
Total 244 5980 6224

Figure 3.15: Contingency table for the smallpox data set.

inoculated
yes no  Total
result lived 0.0382 0.8252 0.8634
died 0.0010 0.1356 0.1366

Total 0.0392 0.9608 1.0000

Figure 3.16: Table proportions for the smallpox data, computed by dividing each
count by the table total, 6224.

GUIDED PRACTICE 3.31

Write out, in formal notation, the probability a randomly selected person who was not inoculated
died from smallpox, and find this probability.”®

GUIDED PRACTICE 3.32

Determine the probability that an inoculated person died from smallpox. How does this result
compare with the result of Guided Practice 3.317%°

. . . P h_1 i d_not, truth is fashi 0.0615
27(a) This probability is Z&C ear;g:rﬁii i;:ashirn) is fashion) _ 0369¢ = 0-3626. (b) The total equals 1. (c) Under

the condition the photo is about fashion, the ML algorithm must have either predicted it was about fashion or
predicted it was not about fashion. The complement still works for conditional probabilities, provided the probabilities
are conditioned on the same information.

28P(resu1t — died | inoculated — no) — P(result = died and inoculated = no) — 0.1356 _ 0.1411.

P(inoculated = no) 0.9608
29 s . _ _ P(result = died and inoculated = yes) _  0.0010 __ . .
P(result = died | inoculated = yes) = Plinoculated = yes) = o303 = 0.0255 (if we avoided

rounding errors, we’d get 6/244 = 0.0246). The death rate for individuals who were inoculated is only about 1 in 40
while the death rate is about 1 in 7 for those who were not inoculated.

99
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GUIDED PRACTICE 3.33

The people of Boston self-selected whether or not to be inoculated. (a) Is this study observational
or was this an experiment? (b) Can we infer any causal connection using these data? (c¢) What are
some potential confounding variables that might influence whether someone 1lived or died and also
affect whether that person was inoculated?*’

3.2.5 General multiplication rule

Section 3.1.7 introduced the Multiplication Rule for independent processes. Here we provide
the General Multiplication Rule for events that might not be independent.

GENERAL MULTIPLICATION RULE

If A and B represent two outcomes or events, then
P(A and B) = P(A|B) x P(B)

It is useful to think of A as the outcome of interest and B as the condition.

This General Multiplication Rule is simply a rearrangement of the conditional probability equation.

EXAMPLE 3.34

Consider the smallpox data set. Suppose we are given only two pieces of information: 96.08%
of residents were not inoculated, and 85.88% of the residents who were not inoculated ended up
surviving. How could we compute the probability that a resident was not inoculated and lived?

We will compute our answer using the General Multiplication Rule and then verify it using Fig-
ure 3.16. We want to determine

P(result = lived and inoculated = no)
and we are given that
P(result = lived | inoculated = no) = 0.8588 P(inoculated = no) = 0.9608
Among the 96.08% of people who were not inoculated, 85.88% survived:
P(result = lived and inoculated = no) = 0.8588 x 0.9608 = 0.8251
This is equivalent to the General Multiplication Rule. We can confirm this probability in Figure 3.16

at the intersection of no and lived (with a small rounding error).

GUIDED PRACTICE 3.35

Use P(inoculated = yes) = 0.0392 and P(result = lived | inoculated = yes) = 0.9754 to
determine the probability that a person was both inoculated and lived.*!

GUIDED PRACTICE 3.36

If 97.54% of the inoculated people lived, what proportion of inoculated people must have died?””

30Brief answers: (a) Observational. (b) No, we cannot infer causation from this observational study. (c) Accessi-
bility to the latest and best medical care. There are other valid answers for part (c).

31The answer is 0.0382, which can be verified using Figure 3.16.

32There were only two possible outcomes: lived or died. This means that 100% - 97.54% = 2.46% of the people
who were inoculated died.
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SUM OF CONDITIONAL PROBABILITIES

Let Aq, ..., A represent all the disjoint outcomes for a variable or process. Then if B is an
event, possibly for another variable or process, we have:

P(Ay|B)+ -+ P(A|B) =1

The rule for complements also holds when an event and its complement are conditioned on the
same information:

P(A|B) = 1 — P(A°|B)

GUIDED PRACTICE 3.37

Based on the probabilities computed above, does it appear that inoculation is effective at reducing
the risk of death from smallpox??’

3.2.6 Independence considerations in conditional probability

If two events are independent, then knowing the outcome of one should provide no information
about the other. We can show this is mathematically true using conditional probabilities.

GUIDED PRACTICE 3.38

Let X and Y represent the outcomes of rolling two dice.**

(a) What is the probability that the first die, X, is 17

(b) What is the probability that both X and Y are 17?

(c) Use the formula for conditional probability to compute P(Y =1 | X = 1).
(d) What is P(Y = 1)? Is this different from the answer from part (¢)? Explain.

We can show in Guided Practice 3.38(c) that the conditioning information has no influence by
using the Multiplication Rule for independence processes:

PY=1and X =1)

PY=1|X=1)=

P(X =1)

P(Y =1)x P(X = 1)
- P(X =1)
=P(Y =1)

GUIDED PRACTICE 3.39

Ron is watching a roulette table in a casino and notices that the last five outcomes were black. He
figures that the chances of getting black six times in a row is very small (about 1/64) and puts his
paycheck on red. What is wrong with his reasoning?"’

33The samples are large relative to the difference in death rates for the “inoculated” and “not inoculated” groups,
so it seems there is an association between inoculated and outcome. However, as noted in the solution to Guided
Practice 3.33, this is an observational study and we cannot be sure if there is a causal connection. (Further research
has shown that inoculation is effective at reducing death rates.)

34Brief solutions: (a) 1/6. (b) 1/36. (c) % = 11//—366 = 1/6. (d) The probability is the same as in
part (c): P(Y = 1) =1/6. The probability that Y = 1 was unchanged by knowledge about X, which makes sense as
X and Y are independent.

35He has forgotten that the next roulette spin is independent of the previous spins. Casinos do employ this practice,
posting the last several outcomes of many betting games to trick unsuspecting gamblers into believing the odds are
in their favor. This is called the gambler’s fallacy.
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3.2.7 Tree diagrams

Tree diagrams are a tool to organize outcomes and probabilities around the structure of the
data. They are most useful when two or more processes occur in a sequence and each process is
conditioned on its predecessors.

The smallpox data fit this description. We see the population as split by inoculation: yes
and no. Following this split, survival rates were observed for each group. This structure is reflected
in the tree diagram shown in Figure 3.17. The first branch for inoculation is said to be the
primary branch while the other branches are secondary.

Inoculated Result
_lived, 0-9754 ) 039270.9754 = 0.03824
yes, 0.0392
_died, 0.0246 ) 1390+0.0246 = 0.00096
_lived, 08589 ) 9508+0.8580 = 0.82523
no, 0.9608
died, 0.1411

--------- ‘--2Co--0.9608*0.1411 = 0.13557

Figure 3.17: A tree diagram of the smallpox data set.

Tree diagrams are annotated with marginal and conditional probabilities, as shown in Fig-
ure 3.17. This tree diagram splits the smallpox data by inoculation into the yes and no groups
with respective marginal probabilities 0.0392 and 0.9608. The secondary branches are conditioned
on the first, so we assign conditional probabilities to these branches. For example, the top branch in
Figure 3.17 is the probability that result = lived conditioned on the information that inoculated
= yes. We may (and usually do) construct joint probabilities at the end of each branch in our tree
by multiplying the numbers we come across as we move from left to right. These joint probabilities
are computed using the General Multiplication Rule:

P(inoculated = yes and result = lived)
= P(inoculated = yes) x P(result = lived|inoculated = yes)
= 0.0392 x 0.9754 = 0.0382
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EXAMPLE 3.40

Consider the midterm and final for a statistics class. Suppose 13% of students earned an A on the
midterm. Of those students who earned an A on the midterm, 47% received an A on the final, and
11% of the students who earned lower than an A on the midterm received an A on the final. You
randomly pick up a final exam and notice the student received an A. What is the probability that
this student earned an A on the midterm?

The end-goal is to find P(midterm = A|final = A). To calculate this conditional probability, we
need the following probabilities:

P(midterm = A and final = A) and P(final = A)

However, this information is not provided, and it is not obvious how to calculate these probabilities.
Since we aren’t sure how to proceed, it is useful to organize the information into a tree diagram:

Midterm Final
U ADAT 51340.47 = 0.0611
A, 0.13
_.other, 053 130,53 = 0.0689
AL 5674011 = 0.0057
other, 0.87
_other, 089 e7+0.89 = 0.7743

When constructing a tree diagram, variables provided with marginal probabilities are often used to
create the tree’s primary branches; in this case, the marginal probabilities are provided for midterm
grades. The final grades, which correspond to the conditional probabilities provided, will be shown
on the secondary branches.

With the tree diagram constructed, we may compute the required probabilities:

P(midterm = A and final = A) = 0.0611

P(final = A)
= P(midterm = other and final = A) + P(midterm = A and final = A)
= 0.0957 4+ 0.0611 = 0.1568

The marginal probability, P(final = A), was calculated by adding up all the joint probabilities on
the right side of the tree that correspond to final = A. We may now finally take the ratio of the
two probabilities:

P(midterm = A and final = A)

P(midterm = A|final = A) = P(final — A)
inal =

~0.0611

= 0156 03897

The probability the student also earned an A on the midterm is about 0.39.
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GUIDED PRACTICE 3.41

After an introductory statistics course, 78% of students can successfully construct tree diagrams.
Of those who can construct tree diagrams, 97% passed, while only 57% of those students who could
not construct tree diagrams passed. (a) Organize this information into a tree diagram. (b) What is
the probability that a randomly selected student passed? (c) Compute the probability a student is
able to construct a tree diagram if it is known that she passed.’’

3.2.8 Bayes’ Theorem

In many instances, we are given a conditional probability of the form
P(statement about variable 1 | statement about variable 2)
but we would really like to know the inverted conditional probability:
P(statement about variable 2 | statement about variable 1)

Tree diagrams can be used to find the second conditional probability when given the first. However,
sometimes it is not possible to draw the scenario in a tree diagram. In these cases, we can apply a
very useful and general formula: Bayes’ Theorem.

We first take a critical look at an example of inverting conditional probabilities where we still
apply a tree diagram.

36(a) The tree diagram is shown to the right.
(b) Identify which two joint probabilities represent students who passed, and add them: P(passed) = 0.7566+0.1254 =
0.8820.

(c) P(construct tree diagram | passed) = 373656 — .8578.
Able to construct Pass class
tree diagrams _pass, 097 7g+0.97 = 0.7566
yes, 078
<---f"f‘i-"--q'9-3---- 0.78%0.03 = 0.0234
pass, 0.57

--------- 2 0.22°0.57 = 0.1254
no, 0.22 <
fail, 0.43
L T 0.22°0.43 = 0.0946
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EXAMPLE 3.42

In Canada, about 0.35% of women over 40 will develop breast cancer in any given year. A common
screening test for cancer is the mammogram, but this test is not perfect. In about 11% of patients
with breast cancer, the test gives a false negative: it indicates a woman does not have breast
cancer when she does have breast cancer. Similarly, the test gives a false positive in 7% of patients
who do not have breast cancer: it indicates these patients have breast cancer when they actually do
not. If we tested a random woman over 40 for breast cancer using a mammogram and the test came
back positive — that is, the test suggested the patient has cancer — what is the probability that the
patient actually has breast cancer?

Notice that we are given sufficient information to quickly compute the probability of testing positive
if a woman has breast cancer (1.00 — 0.11 = 0.89). However, we seek the inverted probability of
cancer given a positive test result. (Watch out for the non-intuitive medical language: a positive
test result suggests the possible presence of cancer in a mammogram screening.) This inverted
probability may be broken into two pieces:

P(has BC and mammogram™)

P(has BC | mammogramﬂ P(mammogram+)

where “has BC” is an abbreviation for the patient having breast cancer and “mammogram®™” means
the mammogram screening was positive. We can construct a tree diagram for these probabilities:

Truth Mammogram
cancer. 00035 <..P9_S_“_i‘f‘?'__q'f39.-.. 0.0035*0.89 = 0.00312
_negative, 011 0035+0.11 = 000038
positive, 0.07

------------------ 0.9965*0.07 = 0.06976
no cancer, 0.9965
negative, 0.93
------------------ 0.9965*0.93 = 0.92675

The probability the patient has breast cancer and the mammogram is positive is

P(has BC and mammogram™) = P(mammogram™ | has BC)P(has BC)
= 0.89 x 0.0035 = 0.00312

The probability of a positive test result is the sum of the two corresponding scenarios:

P(mammogram™) = P(mammogram™ and has BC)
+ P(mammogram™ and no BC)
= P(has BC)P(mammogram™ | has BC)
+ P(no BC)P(mammogram™ | no BC)

= 0.0035 x 0.89 + 0.9965 x 0.07 = 0.07288

Then if the mammogram screening is positive for a patient, the probability the patient has breast
cancer is

+) P(has BC and mammogram™)

P(has BC
(has | mammogram P (mammogram™)

~0.00312

= 007988 ~ 0.0428

That is, even if a patient has a positive mammogram screening, there is still only a 4% chance that
she has breast cancer.
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Example 3.42 highlights why doctors often run more tests regardless of a first positive test
result. When a medical condition is rare, a single positive test isn’t generally definitive.

Consider again the last equation of Example 3.42. Using the tree diagram, we can see that the
numerator (the top of the fraction) is equal to the following product:

P(has BC and mammogram™) = P(mammogram™ | has BC)P(has BC)

The denominator — the probability the screening was positive — is equal to the sum of probabilities
for each positive screening scenario:
)

P(mammogram™) = P(mammogram™® and no BC) + P(mammogram™ and has BC)

In the example, each of the probabilities on the right side was broken down into a product of a
conditional probability and marginal probability using the tree diagram.
*) = P(mammogram™ and no BC) + P(mammogram™ and has BC)
= P(mammogram™ | no BC)P(no BQ)

+ P(mammogram™ | has BC)P(has BC)

P(mammogram

We can see an application of Bayes’ Theorem by substituting the resulting probability expressions
into the numerator and denominator of the original conditional probability.

)
P(mammogram™ | has BC)P(has BC)
P(mammogram™ | no BC)P(no BC) + P(mammogram™ | has BC)P(has BC)

P(has BC | mammogram

BAYES’ THEOREM: INVERTING PROBABILITIES

Consider the following conditional probability for variable 1 and variable 2:

P(outcome A; of variable 1 | outcome B of variable 2)

Bayes’ Theorem states that this conditional probability can be identified as the following frac-
tion:
P(B|A1)P(A:)
P(B|A1)P(A1) + P(B|A2)P(Az) + -+ + P(B|A) P(Ax)

where As, Az, ..., and Ay represent all other possible outcomes of the first variable.

Bayes’ Theorem is a generalization of what we have done using tree diagrams. The numerator
identifies the probability of getting both A; and B. The denominator is the marginal probability of
getting B. This bottom component of the fraction appears long and complicated since we have to
add up probabilities from all of the different ways to get B. We always completed this step when
using tree diagrams. However, we usually did it in a separate step so it didn’t seem as complex.

To apply Bayes’ Theorem correctly, there are two preparatory steps:

(1) First identify the marginal probabilities of each possible outcome of the first variable: P(A;),
P(A3), ..., P(Ag).

(2) Then identify the probability of the outcome B, conditioned on each possible scenario for the
first variable: P(B|A;), P(B|A2), ..., P(B|Ag).

Once each of these probabilities are identified, they can be applied directly within the formula.
Bayes’ Theorem tends to be a good option when there are so many scenarios that drawing a tree
diagram would be complex.
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GUIDED PRACTICE 3.43

Jose visits campus every Thursday evening. However, some days the parking garage is full, often
due to college events. There are academic events on 35% of evenings, sporting events on 20% of
evenings, and no events on 45% of evenings. When there is an academic event, the garage fills up
about 25% of the time, and it fills up 70% of evenings with sporting events. On evenings when
there are no events, it only fills up about 5% of the time. If Jose comes to campus and finds the
garage full, what is the probability that there is a sporting event? Use a tree diagram to solve this
problem.*”

EXAMPLE 3.44

Here we solve the same problem presented in Guided Practice 3.43, except this time we use Bayes’
Theorem.

The outcome of interest is whether there is a sporting event (call this A;), and the condition is that
the lot is full (B). Let As represent an academic event and Aj represent there being no event on
campus. Then the given probabilities can be written as

P(A;) =02 P(A;) =0.35 P(A3) = 0.45
P(B|A;) = 0.7 P(B|Ay) = 0.25 P(B|As) = 0.05

Bayes’ Theorem can be used to compute the probability of a sporting event (A;) under the condition
that the parking lot is full (B):

P(B|A;)P(A;)
(B|A1)P(Ay) + P(B|A2)P(A2) + P(B|A3) P(A3)
(0.7)(0.2)
(0.7)(0.2) + (0.25)(0.35) + (0.05)(0.45)
= 0.56

P(Ay|B) =

Based on the information that the garage is full, there is a 56% probability that a sporting event is
being held on campus that evening.

37The tree diagram, with three

primary branches, is shown to Event Garage full
the right. Next, we identify two Full. 0.95
probabilities from the tree dia- ’ B R TR E R 0.35*0.25 = 0.0875
. Academic, 0.35
gram. (1) The probability that ~  ~--------2---=- Spaces Available, 0.75
there is a sporting event and S-ti---------1--1-70.35%0.75 = 0.2625
the garage is full: 0.14. (2) The Full. 0.7
probability the garage is full: Sporting, 0.20< ””””””””” 0.270.7 = 0.14
0.0875 + 0.14 + 0.0225 = 0.25. < Tt s ;
paces Available, 0.3 _ . _
Then the solution is the ratioof ~ \. ~  TTroottosmeoooeoes 0.2*0.3 = 0.06
these probabilities: 0.14 _ 0 56. Full, 0.05
0.25 o nH PR =
If the garage is full, there is a None, 0.45 0.45*0.05 = 0.0225
56% probability that there isa T Spaces Available, 0.95) , .0 oc _ 0 4575

sporting event.
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GUIDED PRACTICE 3.45

Use the information in the previous exercise and example to verify the probability that there is an
academic event conditioned on the parking lot being full is 0.35.%%

GUIDED PRACTICE 3.46

In Guided Practice 3.43 and 3.45, you found that if the parking lot is full, the probability there is a
sporting event is 0.56 and the probability there is an academic event is 0.35. Using this information,
compute P(no event | the lot is full).?”

The last several exercises offered a way to update our belief about whether there is a sporting
event, academic event, or no event going on at the school based on the information that the parking
lot was full. This strategy of updating beliefs using Bayes’ Theorem is actually the foundation of an
entire section of statistics called Bayesian statistics. While Bayesian statistics is very important
and useful, we will not have time to cover much more of it in this book.

38Short answer:
P(BJA2)P(A2)
P(B|A1)P(A1) + P(B|A2)P(A2) + P(B|A3)P(A3)
B (0.25)(0.35)
= (0.7)(0.2) + (0.25)(0.35) + (0.05)(0.45)
=0.35

P(A2|B) =

39Fach probability is conditioned on the same information that the garage is full, so the complement may be used:
1.00 — 0.56 — 0.35 = 0.09.
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Exercises

3.13 Joint and conditional probabilities. P(A) = 0.3, P(B) = 0.7
(a) Can you compute P(A and B) if you only know P(A) and P(B)?

(b) Assuming that events A and B arise from independent random processes,

i. what is P(A and B)?
ii. what is P(A or B)?
iii. what is P(A|B)?
(c) If we are given that P(A and B) = 0.1, are the random variables giving rise to events A and B indepen-
dent?
(d) If we are given that P(A and B) = 0.1, what is P(A|B)?

3.14 PB & J. Suppose 80% of people like peanut butter, 89% like jelly, and 78% like both. Given that a
randomly sampled person likes peanut butter, what’s the probability that he also likes jelly?

3.15 Global warming. A Pew Research poll asked 1,306 Americans “From what you’ve read and heard,
is there solid evidence that the average temperature on earth has been getting warmer over the past few
decades, or not?”. The table below shows the distribution of responses by party and ideology, where the
counts have been replaced with relative frequencies.*’

Response

Earth is Not Don’t Know
warming warming Refuse Total
Conservative Republican 0.11 0.20 0.02 0.33
Party and  Mod/Lib Republican 0.06 0.06 0.01 0.13
Ideology Mod/Cons Democrat 0.25 0.07 0.02 0.34
Liberal Democrat 0.18 0.01 0.01 0.20
Total 0.60 0.34 0.06 1.00

(a) Are believing that the earth is warming and being a liberal Democrat mutually exclusive?

(b) What is the probability that a randomly chosen respondent believes the earth is warming or is a liberal
Democrat?

(c) What is the probability that a randomly chosen respondent believes the earth is warming given that he
is a liberal Democrat?

(d) What is the probability that a randomly chosen respondent believes the earth is warming given that he
is a conservative Republican?

(e) Does it appear that whether or not a respondent believes the earth is warming is independent of their
party and ideology? Explain your reasoning.

(f) What is the probability that a randomly chosen respondent is a moderate/liberal Republican given that
he does not believe that the earth is warming?

40Pew Research Center, Majority of Republicans No Longer See Evidence of Global Warming, data collected on
October 27, 2010.
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3.16 Health coverage, relative frequencies. The Behavioral Risk Factor Surveillance System (BRFSS)
is an annual telephone survey designed to identify risk factors in the adult population and report emerging
health trends. The following table displays the distribution of health status of respondents to this survey
(excellent, very good, good, fair, poor) and whether or not they have health insurance.

Health Status

Excellent  Very good  Good Fair Poor Total

Health No 0.0230 0.0364 0.0427 0.0192 0.0050 0.1262
Coverage Yes 0.2099 0.3123 0.2410 0.0817 0.0289 0.8738
Total 0.2329 0.3486 0.2838 0.1009 0.0338 1.0000

) Are being in excellent health and having health coverage mutually exclusive?

What is the probability that a randomly chosen individual has excellent health?

What is the probability that a randomly chosen individual has excellent health given that he has health

coverage?

What is the probability that a randomly chosen individual has excellent health given that he doesn’t

have health coverage?

Do having excellent health and having health coverage appear to be independent?

3.17 Burger preferences. A 2010 SurveyUSA poll asked 500 Los Angeles residents, “What is the best
hamburger place in Southern California? Five Guys Burgers? In-N-Out Burger? Fat Burger? Tommy’s

Hamburgers? Umami Burger?

Or somewhere else?”

The distribution of responses by gender is shown

Gender

Male Female Total
Five Guys Burgers 5 6 11
In-N-Out Burger 162 181 343
Fat Burger 10 12 22
Tommy’s Hamburgers 27 27 54
Umami Burger 5 1 6
Other 26 20 46
Not Sure 13 5 18
Total 248 252 500

Are being female and liking Five Guys Burgers mutually exclusive?

below.*!
Best
hamburger
place

(a

(b

What is the probability that a randomly chosen male likes In-N-Out the best?
What is the probability that a randomly chosen female likes In-N-Out the best?

What is the probability that a man and a woman who are dating both like In-N-Out the best? Note
any assumption you make and evaluate whether you think that assumption is reasonable.

What is the probability that a randomly chosen person likes Umami best or that person is female?

41SurveyUSA, Results of SurveyUSA News Poll #17718, data collected on December 2, 2010.
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3.18 Assortative mating. Assortative mating is a nonrandom mating pattern where individuals with simi-
lar genotypes and /or phenotypes mate with one another more frequently than what would be expected under
a random mating pattern. Researchers studying this topic collected data on eye colors of 204 Scandinavian
men and their female partners. The table below summarizes the results. For simplicity, we only include
heterosexual relationships in this exercise.””

Partner (female)
Blue Brown Green Total

Blue 78 23 13 114
Brown 19 23 12 54
Self (male) o oon 11 9 16 36
Total 108 55 a1 204

(a) What is the probability that a randomly chosen male respondent or his partner has blue eyes?

(b) What is the probability that a randomly chosen male respondent with blue eyes has a partner with blue
eyes?

(c) What is the probability that a randomly chosen male respondent with brown eyes has a partner with
blue eyes? What about the probability of a randomly chosen male respondent with green eyes having a
partner with blue eyes?

(d) Does it appear that the eye colors of male respondents and their partners are independent? Explain
your reasoning.

3.19 Drawing box plots. After an introductory statistics course, 80% of students can successfully construct
box plots. Of those who can construct box plots, 86% passed, while only 65% of those students who could
not construct box plots passed.

(a) Construct a tree diagram of this scenario.
(b) Calculate the probability that a student is able to construct a box plot if it is known that he passed.

3.20 Predisposition for thrombosis. A genetic test is used to determine if people have a predisposition
for thrombosis, which is the formation of a blood clot inside a blood vessel that obstructs the flow of blood
through the circulatory system. It is believed that 3% of people actually have this predisposition. The
genetic test is 99% accurate if a person actually has the predisposition, meaning that the probability of a
positive test result when a person actually has the predisposition is 0.99. The test is 98% accurate if a
person does not have the predisposition. What is the probability that a randomly selected person who tests
positive for the predisposition by the test actually has the predisposition?

3.21 It’s never lupus. Lupus is a medical phenomenon where antibodies that are supposed to attack
foreign cells to prevent infections instead see plasma proteins as foreign bodies, leading to a high risk of
blood clotting. It is believed that 2% of the population suffer from this disease. The test is 98% accurate
if a person actually has the disease. The test is 74% accurate if a person does not have the disease. There
is a line from the Fox television show House that is often used after a patient tests positive for lupus: “It’s
never lupus.” Do you think there is truth to this statement? Use appropriate probabilities to support your
answer.

3.22 Exit poll. Edison Research gathered exit poll results from several sources for the Wisconsin recall
election of Scott Walker. They found that 53% of the respondents voted in favor of Scott Walker. Addition-
ally, they estimated that of those who did vote in favor for Scott Walker, 37% had a college degree, while
44% of those who voted against Scott Walker had a college degree. Suppose we randomly sampled a person
who participated in the exit poll and found that he had a college degree. What is the probability that he
voted in favor of Scott Walker?*’

42B. Laeng et al. “Why do blue-eyed men prefer women with the same eye color?” In: Behavioral Ecology and
Sociobiology 61.3 (2007), pp. 371-384.
43New York Times, Wisconsin recall exit polls.
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3.3 Sampling from a small population

When we sample observations from a population, usually we’re only sampling a small fraction of the
possible individuals or cases. However, sometimes our sample size is large enough or the population
is small enough that we sample more than 10% of a population®* without replacement (meaning
we do not have a chance of sampling the same cases twice). Sampling such a notable fraction of a
population can be important for how we analyze the sample.

EXAMPLE 3.47

Professors sometimes select a student at random to answer a question. If each student has an equal
chance of being selected and there are 15 people in your class, what is the chance that she will pick
you for the next question?

If there are 15 people to ask and none are skipping class, then the probability is 1/15, or about
0.067.

EXAMPLE 3.48

If the professor asks 3 questions, what is the probability that you will not be selected? Assume that
she will not pick the same person twice in a given lecture.

For the first question, she will pick someone else with probability 14/15. When she asks the second
question, she only has 14 people who have not yet been asked. Thus, if you were not picked on the
first question, the probability you are again not picked is 13/14. Similarly, the probability you are
again not picked on the third question is 12/13, and the probability of not being picked for any of
the three questions is

P(not picked in 3 questions)
= P(Q1 = not_picked, Q2 = not_picked, Q3 = not_picked.)
141312 12

GUIDED PRACTICE 3.49

What rule permitted us to multiply the probabilities in Example 3.4874°

44The 10% guideline is a rule of thumb cutoff for when these considerations become more important.
45The three probabilities we computed were actually one marginal probability, P(Q1=not_picked), and two condi-
tional probabilities:
P(Q2 = not_picked | Q1 = not_picked)
P(Q3 = not_picked | Q1 = not_picked, Q2 = not_picked)

Using the General Multiplication Rule, the product of these three probabilities is the probability of not being picked
in 3 questions.
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EXAMPLE 3.50

Suppose the professor randomly picks without regard to who she already selected, i.e. students can
be picked more than once. What is the probability that you will not be picked for any of the three
questions?

Each pick is independent, and the probability of not being picked for any individual question is
14/15. Thus, we can use the Multiplication Rule for independent processes.

P(not picked in 3 questions)
= P(Q1 = not_picked, Q2 = not_picked, Q3 = not_picked.)
ZEXEXE:0.813
15 15 15
You have a slightly higher chance of not being picked compared to when she picked a new person
for each question. However, you now may be picked more than once.

GUIDED PRACTICE 3.51

Under the setup of Example 3.50, what is the probability of being picked to answer all three ques-
tions?*0

If we sample from a small population without replacement, we no longer have independence
between our observations. In Example 3.48, the probability of not being picked for the second ques-
tion was conditioned on the event that you were not picked for the first question. In Example 3.50,
the professor sampled her students with replacement: she repeatedly sampled the entire class
without regard to who she already picked.

GUIDED PRACTICE 3.52

Your department is holding a raffle. They sell 30 tickets and offer seven prizes. (a) They place the
tickets in a hat and draw one for each prize. The tickets are sampled without replacement, i.e. the
selected tickets are not placed back in the hat. What is the probability of winning a prize if you buy
one ticket? (b) What if the tickets are sampled with replacement?"”

GUIDED PRACTICE 3.53

Compare your answers in Guided Practice 3.52. How much influence does the sampling method
have on your chances of winning a prize?*®

Had we repeated Guided Practice 3.52 with 300 tickets instead of 30, we would have found
something interesting: the results would be nearly identical. The probability would be 0.0233
without replacement and 0.0231 with replacement. When the sample size is only a small fraction
of the population (under 10%), observations are nearly independent even when sampling without
replacement.

46 P(being picked to answer all three questions) = (%)3 = 0.00030.

47(a) First determine the probability of not winning. The tickets are sampled without replacement, which means
the probability you do not win on the first draw is 29/30, 28/29 for the second, ..., and 23/24 for the seventh. The
probability you win no prize is the product of these separate probabilities: 23/30. That is, the probability of winning
a prize is 1 —23/30 = 7/30 = 0.233. (b) When the tickets are sampled with replacement, there are seven independent
draws. Again we first find the probability of not winning a prize: (29/30)7 = 0.789. Thus, the probability of winning
(at least) one prize when drawing with replacement is 0.211.

48There is about a 10% larger chance of winning a prize when using sampling without replacement. However, at
most one prize may be won under this sampling procedure.
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Exercises

3.23 Marbles in an urn. Imagine you have an urn containing 5 red, 3 blue, and 2 orange marbles in it.

(a) What is the probability that the first marble you draw is blue?

(b) Suppose you drew a blue marble in the first draw. If drawing with replacement, what is the probability
of drawing a blue marble in the second draw?

(¢) Suppose you instead drew an orange marble in the first draw. If drawing with replacement, what is the
probability of drawing a blue marble in the second draw?

(d) If drawing with replacement, what is the probability of drawing two blue marbles in a row?

(e) When drawing with replacement, are the draws independent? Explain.

3.24 Socks in a drawer. In your sock drawer you have 4 blue, 5 gray, and 3 black socks. Half asleep one
morning you grab 2 socks at random and put them on. Find the probability you end up wearing
(a) 2 blue socks
(b) no gray socks
(c) at least 1 black sock
(d)

)

(e) matching socks

a green sock

3.25 Chips in a bag. Imagine you have a bag containing 5 red, 3 blue, and 2 orange chips.
(a) Suppose you draw a chip and it is blue. If drawing without replacement, what is the probability the
next is also blue?

(b) Suppose you draw a chip and it is orange, and then you draw a second chip without replacement. What
is the probability this second chip is blue?

(c¢) If drawing without replacement, what is the probability of drawing two blue chips in a row?

(d) When drawing without replacement, are the draws independent? Explain.

3.26 Books on a bookshelf. The table below shows the distribution of books on a bookcase based on
whether they are nonfiction or fiction and hardcover or paperback.

Format
Hardcover Paperback Total
Type Fiction 13 59 72
Nonfiction 15 8 23
Total 28 67 95

(a) Find the probability of drawing a hardcover book first then a paperback fiction book second when
drawing without replacement.

(b) Determine the probability of drawing a fiction book first and then a hardcover book second, when
drawing without replacement.

(c) Calculate the probability of the scenario in part (b), except this time complete the calculations under
the scenario where the first book is placed back on the bookcase before randomly drawing the second
book.

(d) The final answers to parts (b) and (c) are very similar. Explain why this is the case.

3.27 Student outfits. In a classroom with 24 students, 7 students are wearing jeans, 4 are wearing shorts, 8
are wearing skirts, and the rest are wearing leggings. If we randomly select 3 students without replacement,
what is the probability that one of the selected students is wearing leggings and the other two are wearing
jeans? Note that these are mutually exclusive clothing options.

3.28 The birthday problem. Suppose we pick three people at random. For each of the following questions,
ignore the special case where someone might be born on February 29th, and assume that births are evenly
distributed throughout the year.

(a) What is the probability that the first two people share a birthday?

(b) What is the probability that at least two people share a birthday?
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3.4 Random variables

It’s often useful to model a process using what’s called a random variable. Such a model allows us
to apply a mathematical framework and statistical principles for better understanding and predicting
outcomes in the real world.

EXAMPLE 3.54

Two books are assigned for a statistics class: a textbook and its corresponding study guide. The
university bookstore determined 20% of enrolled students do not buy either book, 55% buy the
textbook only, and 25% buy both books, and these percentages are relatively constant from one
term to another. If there are 100 students enrolled, how many books should the bookstore expect
to sell to this class?

Around 20 students will not buy either book (0 books total), about 55 will buy one book (55 books
total), and approximately 25 will buy two books (totaling 50 books for these 25 students). The
bookstore should expect to sell about 105 books for this class.

GUIDED PRACTICE 3.55

Would you be surprised if the bookstore sold slightly more or less than 105 books?*’

EXAMPLE 3.56

The textbook costs $137 and the study guide $33. How much revenue should the bookstore expect
from this class of 100 students?

About 55 students will just buy a textbook, providing revenue of
$137 x 55 = $7,535
The roughly 25 students who buy both the textbook and the study guide would pay a total of
($137 + $33) x 25 = $170 x 25 = $4, 250

Thus, the bookstore should expect to generate about $7,535 + $4,250 = $11,785 from these 100
students for this one class. However, there might be some sampling variability so the actual amount
may differ by a little bit.

©
»

Probability

o o
o (V)

$137  $170

&
o

Cost

Figure 3.18: Probability distribution for the bookstore’s revenue from one student.
The triangle represents the average revenue per student.

491f they sell a little more or a little less, this should not be a surprise. Hopefully Chapter 1 helped make clear
that there is natural variability in observed data. For example, if we would flip a coin 100 times, it will not usually
come up heads exactly half the time, but it will probably be close.
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EXAMPLE 3.57
What is the average revenue per student for this course?

The expected total revenue is $11,785, and there are 100 students. Therefore the expected revenue
per student is $11,785/100 = $117.85.

3.4.1 Expectation

We call a variable or process with a numerical outcome a random variable, and we usually
represent this random variable with a capital letter such as X, Y, or Z. The amount of money a
single student will spend on her statistics books is a random variable, and we represent it by X.

RANDOM VARIABLE

A random process or variable with a numerical outcome.

The possible outcomes of X are labeled with a corresponding lower case letter  and subscripts.
For example, we write z1 = $0, o = $137, and x3 = $170, which occur with probabilities 0.20, 0.55,
and 0.25. The distribution of X is summarized in Figure 3.18 and Figure 3.19.

7 1 2 3 Total
T; $0  $137 $170 -
P(X=z;) 020 055 025 1.00

Figure 3.19: The probability distribution for the random variable X, representing
the bookstore’s revenue from a single student.

We computed the average outcome of X as $117.85 in Example 3.57. We call this average the
expected value of X, denoted by E(X). The expected value of a random variable is computed by
adding each outcome weighted by its probability:

E(X)=0x P(X =0) + 137 x P(X = 137) + 170 x P(X = 170)
= 0% 0.20 + 137 x 0.55 4 170 x 0.25 = 117.85

EXPECTED VALUE OF A DISCRETE RANDOM VARIABLE

If X takes outcomes 1, ..., zx with probabilities P(X = x1), ..., P(X = xx), the expected
value of X is the sum of each outcome multiplied by its corresponding probability:

EX)=z1; xP(X=21)+ -+ 2, x P(X =xy)
k
p=1l

The Greek letter ;1 may be used in place of the notation E(X).
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137 170
117.85 I '

Figure 3.20: A weight system representing the probability distribution for X. The
string holds the distribution at the mean to keep the system balanced.

H

Figure 3.21: A continuous distribution can also be balanced at its mean.

The expected value for a random variable represents the average outcome. For example, E(X) =
117.85 represents the average amount the bookstore expects to make from a single student, which
we could also write as p = 117.85.

It is also possible to compute the expected value of a continuous random variable (see Sec-
tion 3.5). However, it requires a little calculus and we save it for a later class.”’

In physics, the expectation holds the same meaning as the center of gravity. The distribution
can be represented by a series of weights at each outcome, and the mean represents the balancing
point. This is represented in Figures 3.18 and 3.20. The idea of a center of gravity also expands
to continuous probability distributions. Figure 3.21 shows a continuous probability distribution
balanced atop a wedge placed at the mean.

50y = [xf(x)dr where f(x) represents a function for the density curve.
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3.4.2 Variability in random variables

Suppose you ran the university bookstore. Besides how much revenue you expect to generate,
you might also want to know the volatility (variability) in your revenue.

The variance and standard deviation can be used to describe the variability of a random variable.
Section 2.1.4 introduced a method for finding the variance and standard deviation for a data set. We
first computed deviations from the mean (z; — u), squared those deviations, and took an average to
get the variance. In the case of a random variable, we again compute squared deviations. However,
we take their sum weighted by their corresponding probabilities, just like we did for the expectation.
This weighted sum of squared deviations equals the variance, and we calculate the standard deviation
by taking the square root of the variance, just as we did in Section 2.1.4.

GENERAL VARIANCE FORMULA

If X takes outcomes 1, ..., zx with probabilities P(X = z1), ..., P(X = x) and expected value
p = E(X), then the variance of X, denoted by Var(X) or the symbol o2, is

0% = (21— p)* x P(X =@1) + - -
v (zp — ) x P(X = ay,)

k
= Z(Z’j — p)’P(X = x;)

J=1

The standard deviation of X, labeled o, is the square root of the variance.

EXAMPLE 3.58

Compute the expected value, variance, and standard deviation of X, the revenue of a single statistics
student for the bookstore.

It is useful to construct a table that holds computations for each outcome separately, then add up
the results.

7 1 2 3 Total
T; $0 $137  $170
P(X = ay) 0.20 0.55 0.25

x; X P(X = ay) 0 7535 4250 117.85

Thus, the expected value is p = 117.85, which we computed earlier. The variance can be constructed
by extending this table:

) 1 2 3 Total
x; $0 $137 $170
P(X = ay) 0.20 0.55 0.25
x; X P(X = ay) 0 7535 42.50 117.85
Ti— [ -117.85 19.15 52.15
(x; — p)? 13888.62 366.72 2719.62

(z; —p)?x P(X =a;) 27777 2017  679.9 3659.3

The variance of X is 02 = 3659.3, which means the standard deviation is o = v/3659.3 = $60.49.



3.4. RANDOM VARIABLES

GUIDED PRACTICE 3.59

The bookstore also offers a chemistry textbook for $159 and a book supplement for $41. From past
experience, they know about 25% of chemistry students just buy the textbook while 60% buy both
the textbook and supplement.”!

(a) What proportion of students don’t buy either book? Assume no students buy the supplement
without the textbook.

(b) Let Y represent the revenue from a single student. Write out the probability distribution of
Y, i.e. a table for each outcome and its associated probability.

(¢) Compute the expected revenue from a single chemistry student.

(d) Find the standard deviation to describe the variability associated with the revenue from a
single student.

3.4.3 Linear combinations of random variables

So far, we have thought of each variable as being a complete story in and of itself. Sometimes
it is more appropriate to use a combination of variables. For instance, the amount of time a person
spends commuting to work each week can be broken down into several daily commutes. Similarly,
the total gain or loss in a stock portfolio is the sum of the gains and losses in its components.

EXAMPLE 3.60

John travels to work five days a week. We will use X to represent his travel time on Monday, X5 to
represent his travel time on Tuesday, and so on. Write an equation using X, ..., X5 that represents
his travel time for the week, denoted by W.

His total weekly travel time is the sum of the five daily values:
W=X1+Xo+ X3+ X4+ X5

Breaking the weekly travel time W into pieces provides a framework for understanding each source
of randomness and is useful for modeling W.

51(a) 100% - 25% - 60% = 15% of students do not buy any books for the class. Part (b) is represented by the first
two lines in the table below. The expectation for part (c) is given as the total on the line y; X P(Y = y;). The result
of part (d) is the square-root of the variance listed on in the total on the last line: ¢ = \/Var(Y) = $69.28.

¢ (scenario) 1 (noBook) 2 (textbook) 3 (both) Total
Yi 0.00 159.00 200.00
P(Y =y;) 0.15 0.25 0.60
yi X P(Y =v;) 0.00 39.75 120.00 E(Y) =159.75
yi — E(Y) -159.75 0.75 40.25
(yi — E(Y))?  25520.06 0.56  1620.06

(yi — B(Y))2 x P(Y 3828.0 0.1 972.0 Var(Y) ~ 4800
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EXAMPLE 3.61

It takes John an average of 18 minutes each day to commute to work. What would you expect his
average commute time to be for the week?

We were told that the average (i.e. expected value) of the commute time is 18 minutes per day:
E(X;) = 18. To get the expected time for the sum of the five days, we can add up the expected
time for each individual day:

E(W)=FE(X;+ Xo+ X3+ X4+ X5)
= E(X))+ E(X2) + E(X3)+ E(X4) + E(X5)
=18 + 18 + 18 + 18 + 18 = 90 minutes

The expectation of the total time is equal to the sum of the expected individual times. More
generally, the expectation of a sum of random variables is always the sum of the expectation for
each random variable.

GUIDED PRACTICE 3.62

Elena is selling a TV at a cash auction and also intends to buy a toaster oven in the auction. If
X represents the profit for selling the TV and Y represents the cost of the toaster oven, write an
equation that represents the net change in Elena’s cash.””

GUIDED PRACTICE 3.63

Based on past auctions, Elena figures she should expect to make about $175 on the TV and pay
about $23 for the toaster oven. In total, how much should she expect to make or spend?”’

GUIDED PRACTICE 3.64

Would you be surprised if John’s weekly commute wasn’t exactly 90 minutes or if Elena didn’t make
exactly $152? Explain.”

Two important concepts concerning combinations of random variables have so far been in-
troduced. First, a final value can sometimes be described as the sum of its parts in an equation.
Second, intuition suggests that putting the individual average values into this equation gives the
average value we would expect in total. This second point needs clarification — it is guaranteed to
be true in what are called linear combinations of random variables.

A linear combination of two random variables X and Y is a fancy phrase to describe a
combination

aX +bY

where a and b are some fixed and known numbers. For John’s commute time, there were five random
variables — one for each work day — and each random variable could be written as having a fixed
coefficient of 1:

1X; +1Xe +1X3 +1X, + 1X;5

For Elena’s net gain or loss, the X random variable had a coefficient of +1 and the Y random
variable had a coefficient of -1.

52She will make X dollars on the TV but spend Y dollars on the toaster oven: X — Y.

S83E(X —Y)=E(X)— E(Y) =175 — 23 = $152. She should expect to make about $152.

54No, since there is probably some variability. For example, the traffic will vary from one day to next, and auction
prices will vary depending on the quality of the merchandise and the interest of the attendees.
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When considering the average of a linear combination of random variables, it is safe to plug
in the mean of each random variable and then compute the final result. For a few examples of
nonlinear combinations of random variables — cases where we cannot simply plug in the means — see
the footnote.”®

LINEAR COMBINATIONS OF RANDOM VARIABLES AND THE AVERAGE RESULT

If X and Y are random variables, then a linear combination of the random variables is given by
aX + by

where a and b are some fixed numbers. To compute the average value of a linear combination
of random variables, plug in the average of each individual random variable and compute the
result:

ax E(X)+bx E(Y)

Recall that the expected value is the same as the mean, e.g. E(X) = pux.

EXAMPLE 3.65

Leonard has invested $6000 in Caterpillar Inc (stock ticker: CAT) and $2000 in Exxon Mobil Corp
(XOM). If X represents the change in Caterpillar’s stock next month and Y represents the change
in Exxon Mobil’s stock next month, write an equation that describes how much money will be made
or lost in Leonard’s stocks for the month.

For simplicity, we will suppose X and Y are not in percents but are in decimal form (e.g. if
Caterpillar’s stock increases 1%, then X = 0.01; or if it loses 1%, then X = —0.01). Then we can
write an equation for Leonard’s gain as

$6000 x X + $2000 x Y

If we plug in the change in the stock value for X and Y, this equation gives the change in value of
Leonard’s stock portfolio for the month. A positive value represents a gain, and a negative value
represents a loss.

GUIDED PRACTICE 3.66

Caterpillar stock has recently been rising at 2.0% and Exxon Mobil’s at 0.2% per month, respectively.
Compute the expected change in Leonard’s stock portfolio for next month.”®

GUIDED PRACTICE 3.67

You should have found that Leonard expects a positive gain in Guided Practice 3.66. However,
would you be surprised if he actually had a loss this month?””

55If X and Y are random variables, consider the following combinations: XY X x Y, X/Y. In such cases,
plugging in the average value for each random variable and computing the result will not generally lead to an accurate
average value for the end result.

56 £($6000 x X + $2000 x Y') = $6000 x 0.020 + $2000 x 0.002 = $124.

57No. While stocks tend to rise over time, they are often volatile in the short term.
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3.4.4 Variability in linear combinations of random variables

Quantifying the average outcome from a linear combination of random variables is helpful, but
it is also important to have some sense of the uncertainty associated with the total outcome of that
combination of random variables. The expected net gain or loss of Leonard’s stock portfolio was
considered in Guided Practice 3.66. However, there was no quantitative discussion of the volatility
of this portfolio. For instance, while the average monthly gain might be about $124 according to
the data, that gain is not guaranteed. Figure 3.22 shows the monthly changes in a portfolio like
Leonard’s during a three year period. The gains and losses vary widely, and quantifying these
fluctuations is important when investing in stocks.

—-1000 -500 0 500 1000

Monthly Returns Over 3 Years

Figure 3.22: The change in a portfolio like Leonard’s for 36 months, where $6000
is in Caterpillar’s stock and $2000 is in Exxon Mobil’s.

Just as we have done in many previous cases, we use the variance and standard deviation to
describe the uncertainty associated with Leonard’s monthly returns. To do so, the variances of each
stock’s monthly return will be useful, and these are shown in Figure 3.23. The stocks’ returns are
nearly independent.

Here we use an equation from probability theory to describe the uncertainty of Leonard’s
monthly returns; we leave the proof of this method to a dedicated probability course. The variance
of a linear combination of random variables can be computed by plugging in the variances of the
individual random variables and squaring the coefficients of the random variables:

Var(aX +bY) = a® x Var(X) + b* x Var(Y)

It is important to note that this equality assumes the random variables are independent; if inde-
pendence doesn’t hold, then a modification to this equation would be required that we leave as a
topic for a future course to cover. This equation can be used to compute the variance of Leonard’s
monthly return:

Var(6000 x X + 2000 x Y) = 6000 x Var(X) + 2000® x Var(Y)
= 36,000,000 x 0.0057 + 4,000,000 x 0.0021
~ 213,600

The standard deviation is computed as the square root of the variance: /213,600 = $463. While an
average monthly return of $124 on an $8000 investment is nothing to scoff at, the monthly returns
are so volatile that Leonard should not expect this income to be very stable.

Mean (z) Standard deviation (s) Variance (s?)
CAT 0.0204 0.0757 0.0057
XOM 0.0025 0.0455 0.0021

Figure 3.23: The mean, standard deviation, and variance of the CAT and XOM
stocks. These statistics were estimated from historical stock data, so notation used
for sample statistics has been used.
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VARIABILITY OF LINEAR COMBINATIONS OF RANDOM VARIABLES

The variance of a linear combination of random variables may be computed by squaring the
constants, substituting in the variances for the random variables, and computing the result:

Var(aX +bY) = a® x Var(X) + b* x Var(Y)

This equation is valid as long as the random variables are independent of each other. The
standard deviation of the linear combination may be found by taking the square root of the
variance.

EXAMPLE 3.68

Suppose John’s daily commute has a standard deviation of 4 minutes. What is the uncertainty in
his total commute time for the week?

The expression for John’s commute time was
Xi+Xo+ X3+ X4+ X5

Each coefficient is 1, and the variance of each day’s time is 4> = 16. Thus, the variance of the total
weekly commute time is

variance =12 x 164+ 12 x 16+ 12 x 16 + 12 x 16 + 12 x 16 = 5 x 16 = 80
standard deviation = v/variance = v/80 = 8.94

The standard deviation for John’s weekly work commute time is about 9 minutes.

GUIDED PRACTICE 3.69

The computation in Example 3.68 relied on an important assumption: the commute time for each
day is independent of the time on other days of that week. Do you think this is valid? Explain.”®

GUIDED PRACTICE 3.70

Consider Elena’s two auctions from Guided Practice 3.62 on page 120. Suppose these auctions are
approximately independent and the variability in auction prices associated with the TV and toaster
oven can be described using standard deviations of $25 and $8. Compute the standard deviation of
Elena’s net gain.””

Consider again Guided Practice 3.70. The negative coefficient for Y in the linear combination
was eliminated when we squared the coefficients. This generally holds true: negatives in a linear
combination will have no impact on the variability computed for a linear combination, but they do
impact the expected value computations.

580ne concern is whether traffic patterns tend to have a weekly cycle (e.g. Fridays may be worse than other days).
If that is the case, and John drives, then the assumption is probably not reasonable. However, if John walks to work,
then his commute is probably not affected by any weekly traffic cycle.

59The equation for Elena can be written as

(HxX+(-1)xY
The variances of X and Y are 625 and 64. We square the coefficients and plug in the variances:
(12 x Var(X) + (-1)2 x Var(Y) = 1 x 625 4+ 1 x 64 = 689

The variance of the linear combination is 689, and the standard deviation is the square root of 689: about $26.25.
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Exercises

3.29 College smokers. At a university, 13% of students smoke.
(a) Calculate the expected number of smokers in a random sample of 100 students from this university.
(b) The university gym opens at 9 am on Saturday mornings. One Saturday morning at 8:55 am there are

27 students outside the gym waiting for it to open. Should you use the same approach from part (a) to
calculate the expected number of smokers among these 27 students?

3.30 Ace of clubs wins. Consider the following card game with a well-shuffled deck of cards. If you draw
a red card, you win nothing. If you get a spade, you win $5. For any club, you win $10 plus an extra $20
for the ace of clubs.

(a) Create a probability model for the amount you win at this game. Also, find the expected winnings for
a single game and the standard deviation of the winnings.
(b) What is the maximum amount you would be willing to pay to play this game? Explain your reasoning.

3.31 Hearts win. In a new card game, you start with a well-shuffled full deck and draw 3 cards without

replacement. If you draw 3 hearts, you win $50. If you draw 3 black cards, you win $25. For any other

draws, you win nothing.

(a) Create a probability model for the amount you win at this game, and find the expected winnings. Also
compute the standard deviation of this distribution.

(b) If the game costs $5 to play, what would be the expected value and standard deviation of the net profit
(or loss)? (Hint: profit = winnings — cost; X —5)

(c) If the game costs $5 to play, should you play this game? Explain.

3.32 s it worth it? Andy is always looking for ways to make money fast. Lately, he has been trying to
make money by gambling. Here is the game he is considering playing: The game costs $2 to play. He draws
a card from a deck. If he gets a number card (2-10), he wins nothing. For any face card ( jack, queen or
king), he wins $3. For any ace, he wins $5, and he wins an extra $20 if he draws the ace of clubs.

(a) Create a probability model and find Andy’s expected profit per game.
(b) Would you recommend this game to Andy as a good way to make money? Explain.

3.33 Portfolio return. A portfolio’s value increases by 18% during a financial boom and by 9% during
normal times. It decreases by 12% during a recession. What is the expected return on this portfolio if each
scenario is equally likely?

3.34 Baggage fees. An airline charges the following baggage fees: $25 for the first bag and $35 for the
second. Suppose 54% of passengers have no checked luggage, 34% have one piece of checked luggage and
12% have two pieces. We suppose a negligible portion of people check more than two bags.

(a) Build a probability model, compute the average revenue per passenger, and compute the corresponding
standard deviation.

(b) About how much revenue should the airline expect for a flight of 120 passengers? With what standard
deviation? Note any assumptions you make and if you think they are justified.

3.35 American roulette. The game of American roulette involves spinning a wheel with 38 slots: 18 red,
18 black, and 2 green. A ball is spun onto the wheel and will eventually land in a slot, where each slot has
an equal chance of capturing the ball. Gamblers can place bets on red or black. If the ball lands on their
color, they double their money. If it lands on another color, they lose their money. Suppose you bet $1 on
red. What’s the expected value and standard deviation of your winnings?

3.36 European roulette. The game of European roulette involves spinning a wheel with 37 slots: 18 red,

18 black, and 1 green. A ball is spun onto the wheel and will eventually land in a slot, where each slot has

an equal chance of capturing the ball. Gamblers can place bets on red or black. If the ball lands on their

color, they double their money. If it lands on another color, they lose their money.

(a) Suppose you play roulette and bet $3 on a single round. What is the expected value and standard
deviation of your total winnings?

(b) Suppose you bet $1 in three different rounds. What is the expected value and standard deviation of
your total winnings?

(¢) How do your answers to parts (a) and (b) compare? What does this say about the riskiness of the two
games?
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3.5 Continuous distributions

So far in this chapter we’ve discussed cases where the outcome of a variable is discrete. In this
section, we consider a context where the outcome is a continuous numerical variable.

EXAMPLE 3.71

Figure 3.24 shows a few different hollow histograms for the heights of US adults. How does changing
the number of bins allow you to make different interpretations of the data?

Adding more bins provides greater detail. This sample is extremely large, which is why much smaller
bins still work well. Usually we do not use so many bins with smaller sample sizes since small counts
per bin mean the bin heights are very volatile.

[ —
—
I T T 1 I T T 1
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height (cm) height (cm)
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height (cm) height (cm)

Figure 3.24: Four hollow histograms of US adults heights with varying bin widths.

EXAMPLE 3.72
What proportion of the sample is between 180 cm and 185 cm tall (about 5’117 to 6'17)?

We can add up the heights of the bins in the range 180 cm and 185 and divide by the sample size.
For instance, this can be done with the two shaded bins shown in Figure 3.25. The two bins in
this region have counts of 195,307 and 156,239 people, resulting in the following estimate of the
probability:

195307 + 156239
3,000,000

=0.1172

This fraction is the same as the proportion of the histogram’s area that falls in the range 180 to 185
cm.
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I T T 1
140 160 180 200
height (cm)

Figure 3.25: A histogram with bin sizes of 2.5 cm. The shaded region represents
individuals with heights between 180 and 185 cm.

3.5.1 From histograms to continuous distributions

Examine the transition from a boxy hollow histogram in the top-left of Figure 3.24 to the much
smoother plot in the lower-right. In this last plot, the bins are so slim that the hollow histogram is
starting to resemble a smooth curve. This suggests the population height as a continuous numerical
variable might best be explained by a curve that represents the outline of extremely slim bins.

This smooth curve represents a probability density function (also called a density or
distribution), and such a curve is shown in Figure 3.26 overlaid on a histogram of the sample. A
density has a special property: the total area under the density’s curve is 1.

[ I I |
140 160 180 200

height (cm)

Figure 3.26: The continuous probability distribution of heights for US adults.
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3.5.2 Probabilities from continuous distributions

We computed the proportion of individuals with heights 180 to 185 cm in Example 3.72 as a
fraction:

number of people between 180 and 185

total sample size

We found the number of people with heights between 180 and 185 cm by determining the fraction
of the histogram’s area in this region. Similarly, we can use the area in the shaded region under the
curve to find a probability (with the help of a computer):

P(height between 180 and 185) = area between 180 and 185 = 0.1157

The probability that a randomly selected person is between 180 and 185 cm is 0.1157. This is very
close to the estimate from Example 3.72: 0.1172.

[ I I |
140 160 180 200

height (cm)

Figure 3.27: Density for heights in the US adult population with the area between
180 and 185 cm shaded. Compare this plot with Figure 3.25.

GUIDED PRACTICE 3.73

Three US adults are randomly selected. The probability a single adult is between 180 and 185 c¢m
is 0.1157.%°

(a) What is the probability that all three are between 180 and 185 cm tall?
(b) What is the probability that none are between 180 and 185 cm?

EXAMPLE 3.74

What is the probability that a randomly selected person is exactly 180 cm? Assume you can
measure perfectly.

This probability is zero. A person might be close to 180 c¢m, but not exactly 180 cm tall. This also
makes sense with the definition of probability as area; there is no area captured between 180 cm
and 180 cm.

GUIDED PRACTICE 3.75

Suppose a person’s height is rounded to the nearest centimeter. Is there a chance that a random
person’s measured height will be 180 cm?°"

60Brief answers: (a) 0.1157 x 0.1157 x 0.1157 = 0.0015. (b) (1 — 0.1157)3 = 0.692
61This has positive probability. Anyone between 179.5 cm and 180.5 cm will have a measured height of 180 cm.
This is probably a more realistic scenario to encounter in practice versus Example 3.74.
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Exercises

3.37 Cat weights. The histogram shown below represents the weights (in kg) of 47 female and 97 male

62

cats.
(a) What fraction of these cats weigh less than 2.5 357
kg?
(b) What fraction of these cats weigh between 2.5
and 2.75 kg? 25+
(c) What fraction of these cats weigh between 2.75
and 3.5 kg?
15
5_
I T T T 1
2.0 25 3.0 35 4.0
Body weight

3.38 Income and gender. The relative frequency table below displays the distribution of annual total
personal income (in 2009 inflation-adjusted dollars) for a representative sample of 96,420,486 Americans.
These data come from the American Community Survey for 2005-2009. This sample is comprised of 59%
males and 41% females."”

Income Total
$1 to $9,999 or loss  2.2%
$10,000 to $14,999 4.7%
$15,000 to $24,999 15.8%

(a) Describe the distribution of total personal income.

(b) What is the probability that a randomly chosen US resident
makes less than $50,000 per year?

(¢) What is the probability that a randomly chosen US resident $95.000 to $34.999  18.3%

makes less than $50,000 per year and is female? Note any $35’000 to $497999 21.2%

assumptions you make. $50,000 to $64,999  13.9%

(d) The same data source indicates that 71.8% of females make $65,000 to $74,999 5.8%

less than $50,000 per year. Use this value to determine $75,000 to $99,999 8.4%

whether or not the assumption you made in part (c) is valid. $100,000 or more 9.7%
62w, N. Venables and B. D. Ripley. Modern Applied Statistics with S. Fourth Edition.

www.stats.ox.ac.uk/pub/MASS4. New York: Springer, 2002.
63U.S. Census Bureau, 2005-2009 American Community Survey.


http://www.openintro.org/redirect.php?go=textbook-modern_applied_stat_with_s&referrer=os4_pdf
http://www.openintro.org/redirect.php?go=textbook-acd2005_9&referrer=os4_pdf

3.5. CONTINUOUS DISTRIBUTIONS

Chapter exercises

3.39 Grade distributions. Each row in the table below is a proposed grade distribution for a class. Identify
each as a valid or invalid probability distribution, and explain your reasoning.

Grades
A B C D F

(a) 03 03 03 02 01
® o o0 1 0 0
(¢ 03 03 03 0 0
(d 03 05 02 01 -0.1
() 02 04 02 01 0.1
(f) 0 01 11 0 0

3.40 Health coverage, frequencies. The Behavioral Risk Factor Surveillance System (BRFSS) is an
annual telephone survey designed to identify risk factors in the adult population and report emerging health
trends. The following table summarizes two variables for the respondents: health status and health coverage,
which describes whether each respondent had health insurance.®*

Health Status
Excellent  Very good Good Fair  Poor Total

Health No 459 727 854 385 99 2,524
Coverage Yes 4,198 6,245 4,821 1,634 578 17,476
Total 4,657 6,972 5,675 2,019 677 20,000

(a) If we draw one individual at random, what is the probability that the respondent has excellent health
and doesn’t have health coverage?

(b) If we draw one individual at random, what is the probability that the respondent has excellent health
or doesn’t have health coverage?

3.41 HIV in Swaziland. Swaziland has the highest HIV prevalence in the world: 25.9% of this country’s
population is infected with HIV.°® The ELISA test is one of the first and most accurate tests for HIV. For
those who carry HIV, the ELISA test is 99.7% accurate. For those who do not carry HIV, the test is 92.6%
accurate. If an individual from Swaziland has tested positive, what is the probability that he carries HIV?

3.42 Twins. About 30% of human twins are identical, and the rest are fraternal. Identical twins are
necessarily the same sex — half are males and the other half are females. One-quarter of fraternal twins are
both male, one-quarter both female, and one-half are mixes: one male, one female. You have just become a
parent of twins and are told they are both girls. Given this information, what is the probability that they
are identical?

3.43 Cost of breakfast. Sally gets a cup of coffee and a muffin every day for breakfast from one of the
many coffee shops in her neighborhood. She picks a coffee shop each morning at random and independently
of previous days. The average price of a cup of coffee is $1.40 with a standard deviation of 30¢ ($0.30), the
average price of a muffin is $2.50 with a standard deviation of 15¢, and the two prices are independent of
each other.

(a) What is the mean and standard deviation of the amount she spends on breakfast daily?

(b) What is the mean and standard deviation of the amount she spends on breakfast weekly (7 days)?

640ffice of Surveillance, Epidemiology, and Laboratory Services Behavioral Risk Factor Surveillance System, BRFSS
2010 Survey Data.
65Source: CIA Factbook, Country Comparison: HIV/AIDS - Adult Prevalence Rate.
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3.44 Scooping ice cream. Ice cream usually comes in 1.5 quart boxes (48 fluid ounces), and ice cream
scoops hold about 2 ounces. However, there is some variability in the amount of ice cream in a box as well
as the amount of ice cream scooped out. We represent the amount of ice cream in the box as X and the
amount scooped out as Y. Suppose these random variables have the following means, standard deviations,
and variances:

mean SD  variance
X 48 1 1
Y 2 0.25 0.0625

(a) An entire box of ice cream, plus 3 scoops from a second box is served at a party. How much ice cream
do you expect to have been served at this party? What is the standard deviation of the amount of ice
cream served?

(b) How much ice cream would you expect to be left in the box after scooping out one scoop of ice cream?
That is, find the expected value of X — Y. What is the standard deviation of the amount left in the
box?

(c¢) Using the context of this exercise, explain why we add variances when we subtract one random variable
from another.

3.45 Variance of a mean, Part |. Suppose we have independent observations X; and X5 from a distribution
with mean p and standard deviation o. What is the variance of the mean of the two values: %?

3.46 Variance of a mean, Part Il. Suppose we have 3 independent observations X1, X2, X3 from a dis-

tribution with mean p and standard deviation o. What is the variance of the mean of these 3 values:
X1+Xo+X39
5 !

3.47 Variance of a mean, Part lll. Suppose we have n independent observations X1, Xs, ..., X,, from a

distribution with mean p and standard deviation 0. What is the variance of the mean of these n values:
X1+ Xo4+Xp o
n
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In this chapter, we discuss statistical distributions that frequently arise
in the context of data analysis or statistical inference. We start with
the normal distribution in the first section, which is used frequently in
later chapters of this book. The remaining sections will occasionally be

referenced but may be considered optional for the content in this book.

Qo
D+

For videos, slides, and other resources, please visit
www.openintro.org/os
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4.1. NORMAL DISTRIBUTION

4.1 Normal distribution

Among all the distributions we see in practice, one is overwhelmingly the most common. The
symmetric, unimodal, bell curve is ubiquitous throughout statistics. Indeed it is so common, that
people often know it as the normal curve or normal distribution,' shown in Figure 4.1. Variables
such as SAT scores and heights of US adult males closely follow the normal distribution.

Figure 4.1: A normal curve.

NORMAL DISTRIBUTION FACTS

Many variables are nearly normal, but none are exactly normal. Thus the normal distribution,
while not perfect for any single problem, is very useful for a variety of problems. We will use it
in data exploration and to solve important problems in statistics.

4.1.1 Normal distribution model

The normal distribution always describes a symmetric, unimodal, bell-shaped curve. How-
ever, these curves can look different depending on the details of the model. Specifically, the normal
distribution model can be adjusted using two parameters: mean and standard deviation. As you
can probably guess, changing the mean shifts the bell curve to the left or right, while changing the
standard deviation stretches or constricts the curve. Figure 4.2 shows the normal distribution with
mean 0 and standard deviation 1 in the left panel and the normal distributions with mean 19 and
standard deviation 4 in the right panel. Figure 4.3 shows these distributions on the same axis.

T T T 1
-3 -2 -1 0 1 2 3 7 11 15 19 23 27 31

Figure 4.2: Both curves represent the normal distribution. However, they differ in
their center and spread.

If a normal distribution has mean p and standard deviation o, we may write the distribution
as N(u,o). The two distributions in Figure 4.3 may be written as

N(p=0,0=1) and N(p=19,0 =4)

Because the mean and standard deviation describe a normal distribution exactly, they are called
the distribution’s parameters. The normal distribution with mean ;4 = 0 and standard deviation
o =1 is called the standard normal distribution.

11t is also introduced as the Gaussian distribution after Frederic Gauss, the first person to formalize its mathe-
matical expression.
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.

0 10 20 30

Figure 4.3: The normal distributions shown in Figure 4.2 but plotted together and
on the same scale.

GUIDED PRACTICE 4.1

Write down the short-hand for a normal distribution with”
(a) mean 5 and standard deviation 3,

(b) mean -100 and standard deviation 10, and

(c) mean 2 and standard deviation 9.

4.1.2 Standardizing with Z-scores
We often want to put data onto a standardized scale, which can make comparisons more reasonable.

EXAMPLE 4.2

Table 4.4 shows the mean and standard deviation for total scores on the SAT and ACT. The
distribution of SAT and ACT scores are both nearly normal. Suppose Ann scored 1300 on her SAT
and Tom scored 24 on his ACT. Who performed better?

We use the standard deviation as a guide. Ann is 1 standard deviation above average on the SAT:
1100 4 200 = 1300. Tom is 0.5 standard deviations above the mean on the ACT: 21 + 0.5 x 6 = 24.
In Figure 4.5, we can see that Ann tends to do better with respect to everyone else than Tom did,
so her score was better.

SAT ACT
Mean 1100 21
SD 200 6

Figure 4.4: Mean and standard deviation for the SAT and ACT.

Example 4.2 used a standardization technique called a Z-score, a method most commonly
employed for nearly normal observations but that may be used with any distribution. The Z-score
of an observation is defined as the number of standard deviations it falls above or below the mean.
If the observation is one standard deviation above the mean, its Z-score is 1. If it is 1.5 standard
deviations below the mean, then its Z-score is -1.5. If x is an observation from a distribution N (u, o),
we define the Z-score mathematically as

Using pgar = 1100, ogar = 200, and x,,, = 1300, we find Ann’s Z-score:

J _ Taw M _ 13001100
Ann Oonn 200

2(a) N(u=5,0 = 3). (b) N(u= —100,0 = 10). (c) N(u = 2,0 = 9).
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Ann

T T T T T
700 900 1100 1300 1500

T T T T T
9 15 21 27 33

Figure 4.5: Ann’s and Tom’s scores shown against the SAT and ACT distributions.

THE Z-SCORE

The Z-score of an observation is the number of standard deviations it falls above or below the
mean. We compute the Z-score for an observation z that follows a distribution with mean p
and standard deviation o using

GUIDED PRACTICE 4.3
Use Tom’s ACT score, 24, along with the ACT mean and standard deviation to find his Z-score.?

Observations above the mean always have positive Z-scores, while those below the mean always
have negative Z-scores. If an observation is equal to the mean, such as an SAT score of 1100, then
the Z-score is 0.

GUIDED PRACTICE 4.4

Let X represent a random variable from N(u = 3,0 = 2), and suppose we observe z = 5.19.
(a) Find the Z-score of x.
(b) Use the Z-score to determine how many standard deviations above or below the mean x falls.*

GUIDED PRACTICE 4.5

Head lengths of brushtail possums follow a normal distribution with mean 92.6 mm and standard
deviation 3.6 mm. Compute the Z-scores for possums with head lengths of 95.4 mm and 85.8 mm."’

We can use Z-scores to roughly identify which observations are more unusual than others. An
observation x7 is said to be more unusual than another observation x, if the absolute value of its Z-
score is larger than the absolute value of the other observation’s Z-score: |Z1| > |Z3|. This technique
is especially insightful when a distribution is symmetric.

GUIDED PRACTICE 4.6

Which of the observations in Guided Practice 4.5 is more unusual?®

37 — TTom —HACT _ 24-21 _ &
Tom oACT 6 . .

4(a) Its Z-score is given by Z = £ = # = 2.19/2 = 1.095. (b) The observation z is 1.095 standard
deviations above the mean. We know it must be above the mean since Z is positive.

SFor z1 = 95.4 mm: Z; = L4 = 95:4-92.6 — .78 For x5 = 85.8 mm: Zp = 3282926 — _j g9,

6Because the absolute value of Z-score for the second observation is larger than that of the first, the second
observation has a more unusual head length.
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4.1.3 Finding tail areas

It’s very useful in statistics to be able to identify tail areas of distributions. For instance, how
many people have an SAT score below Ann’s score of 13007 This is the same as Ann’s percentile,
which is the fraction of cases that have lower scores than Ann. We can visualize such a tail area like
the curve and shading shown in Figure 4.6.

[ I I I I I 1
500 700 900 1100 1300 1500 1700

Figure 4.6: The area to the left of Z represents the percentile of the observation.

There are many techniques for doing this, and we’ll discuss three of the options.

1. The most common approach in practice is to use statistical software. For example, in the
program R, we could find the area shown in Figure 4.6 using the following command, which
takes in the Z-score and returns the lower tail area:

> pnorm(1)

[1] 0.8413447
According to this calculation, the region shaded that is below 1300 represents the proportion
0.841 (84.1%) of SAT test takers who had Z-scores below Z = 1. More generally, we can also
specify the cutoff explicitly if we also note the mean and standard deviation:

> pnorm(1300, mean = 1100, sd = 200)

[1] 0.8413447

There are many other software options, such as Python or SAS; even spreadsheet programs
such as Excel and Google Sheets support these calculations.

2. A common strategy in classrooms is to use a graphing calculator, such as a TI or Casio calcula-
tor. These calculators require a series of button presses that are less concisely described. You
can find instructions on using these calculators for finding tail areas of a normal distribution
in the Openlntro video library:

www.openintro.org/videos

3. The last option for finding tail areas is to use what’s called a probability table; these are
occasionally used in classrooms but rarely in practice. Appendix C.1 contains such a table and
a guide for how to use it.

We will solve normal distribution problems in this section by always first finding the Z-score. The
reason is that we will encounter close parallels called test statistics beginning in Chapter 5; these
are, in many instances, an equivalent of a Z-score.
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4.1.4 Normal probability examples

Cumulative SAT scores are approximated well by a normal model, N(u = 1100, 0 = 200).

EXAMPLE 4.7

Shannon is a randomly selected SAT taker, and nothing is known about Shannon’s SAT aptitude.
What is the probability Shannon scores at least 1190 on her SATs?

First, always draw and label a picture of the normal distribution. (Drawings need not be exact to
be useful.) We are interested in the chance she scores above 1190, so we shade this upper tail:

I T 1
700 1100 1500

The picture shows the mean and the values at 2 standard deviations above and below the mean.
The simplest way to find the shaded area under the curve makes use of the Z-score of the cutoff
value. With p = 1100, o = 200, and the cutoff value x = 1190, the Z-score is computed as

r—p 11901100 _ 90 _ . .

Z = =
o 200 200

Using statistical software (or another preferred method), we can area left of Z = 0.45 as 0.6736. To
find the area above Z = 0.45, we compute one minus the area of the lower tail:

1.0000 - 0.6736 = 0.3264

The probability Shannon scores at least 1190 on the SAT is 0.3264.

ALWAYS DRAW A PICTURE FIRST, AND FIND THE Z-SCORE SECOND

For any normal probability situation, always always always draw and label the normal curve
and shade the area of interest first. The picture will provide an estimate of the probability.
After drawing a figure to represent the situation, identify the Z-score for the value of interest.

GUIDED PRACTICE 4.8

If the probability of Shannon scoring at least 1190 is 0.3264, then what is the probability she scores
less than 11907 Draw the normal curve representing this exercise, shading the lower region instead
of the upper one.”

"We found this probability in Example 4.7: 0.6736.

700 1100 1500
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EXAMPLE 4.9
Edward earned a 1030 on his SAT. What is his percentile?

First, a picture is needed. Edward’s percentile is the proportion of people who do not get as high
as a 1030. These are the scores to the left of 1030.

B .

| E—]

700 1100 1500

Identifying the mean p = 1100, the standard deviation ¢ = 200, and the cutoff for the tail area

x = 1030 makes it easy to compute the Z-score:

xr—p 1030 — 1100
c 200

Z = =-0.35

Using statistical software, we get a tail area of 0.3632. Edward is at the 36" percentile.

GUIDED PRACTICE 4.10

Use the results of Example 4.9 to compute the proportion of SAT takers who did better than Edward.
Also draw a new picture.®

FINDING AREAS TO THE RIGHT

Many software programs return the area to the left when given a Z-score. If you would like the
area to the right, first find the area to the left and then subtract this amount from one.

GUIDED PRACTICE 4.11

Stuart earned an SAT score of 1500. Draw a picture for each part.
(a) What is his percentile?

(b) What percent of SAT takers did better than Stuart?’

Based on a sample of 100 men, the heights of male adults in the US is nearly normal with mean
70.0” and standard deviation 3.3”.

GUIDED PRACTICE 4.12

Mike is 5’7" and Jose is 6’4”, and they both live in the US.
(a) What is Mike’s height percentile?

(b) What is Jose’s height percentile?

Also draw one picture for each part.'’

8If Edward did better than 36% of SAT takers, then about 64% must have done better than him.

iy -

Tt 1
700 1100 1500

9We leave the drawings to you. (a) Z = 15991100 — 9 —, 0.9772. (b) 1 — 0.9772 = 0.0228.
10First put the heights into inches: 67 and 76 inches. Figures are shown below.
() Zutike = 570 = —0.91 — 0.1814. (b) Zjose = 1570 = 1.82 — 0.9656.

3
Mike | i Jose ‘

67 70 70 76
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The last several problems have focused on finding the percentile (or upper tail) for a particular
observation. What if you would like to know the observation corresponding to a particular percentile?

EXAMPLE 4.13
Erik’s height is at the 40" percentile. How tall is he?

As always, first draw the picture.

40%
(0.40)

1 1
63.4 70 76.6

In this case, the lower tail probability is known (0.40), which can be shaded on the diagram. We want
to find the observation that corresponds to this value. As a first step in this direction, we determine
the Z-score associated with the 40" percentile. Using software, we can obtain the corresponding
Z-score of about -0.25.

Knowing Zg.;x = —0.25 and the population parameters u = 70 and ¢ = 3.3 inches, the Z-score

formula can be set up to determine Erik’s unknown height, labeled x,,,

- W =70
—0.25 =2, = an g ng .

Solving for x,,, yields a height of 69.18 inches. That is, Erik is about 5’9”.

EXAMPLE 4.14
What is the adult male height at the 82"¢ percentile?

Again, we draw the figure first.

Next, we want to find the Z-score at the 82" percentile, which will be a positive value and can be
found using software as Z = 0.92. Finally, the height x is found using the Z-score formula with the
known mean u, standard deviation o, and Z-score Z = 0.92:

w =170

T —
092=27=—+— =
o 3.3

This yields 73.04 inches or about 6’17 as the height at the 82"¢ percentile.

GUIDED PRACTICE 4.15

The SAT scores follow N(1100,200).""
(a) What is the 95" percentile for SAT scores?
(b) What is the 97.5'" percentile for SAT scores?

1 Short answers: (a) Zos = 1.65 — 1430 SAT score. (b) Zg7.5 = 1.96 — 1492 SAT score.

139
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GUIDED PRACTICE 4.16

Adult male heights follow N (70.07,3.37).'2
(a) What is the probability that a randomly selected male adult is at least 6’2" (74 inches)?
(b) What is the probability that a male adult is shorter than 5’9” (69 inches)?

EXAMPLE 4.17
What is the probability that a random adult male is between 5’9" and 6’2" 7

These heights correspond to 69 inches and 74 inches. First, draw the figure. The area of interest is
no longer an upper or lower tail.

| |
63.4 70.0 76.6

The total area under the curve is 1. If we find the area of the two tails that are not shaded (from
Guided Practice 4.16, these areas are 0.3821 and 0.1131), then we can find the middle area:

1.0000 - 0.3821 - 0.1131 = 0.5048

That is, the probability of being between 5’9” and 62”7 is 0.5048.

GUIDED PRACTICE 4.18
SAT scores follow N(1100,200). What percent of SAT takers get between 1100 and 1400?**

GUIDED PRACTICE 4.19
Adult male heights follow N (70.0”,3.3”). What percent of adult males are between 5’5" and 577 7'*

128hort answers: (a) Z = 1.21 — 0.8869, then subtract this value from 1 to get 0.1131. (b) Z = —0.30 — 0.3821.

13This is an abbreviated solution. (Be sure to draw a figure!) First find the percent who get below 1100 and the
percent that get above 1400: Z1100 = 0.00 — 0.5000 (area below), Zi400 = 1.5 — 0.0668 (area above). Final answer:
1.0000 — 0.5000 — 0.0668 = 0.4332.

145°5” is 65 inches (Z = —1.52). 5'7” is 67 inches (Z = —0.91). Numerical solution: 1.000—0.0643—0.8186 = 0.1171,
ie. 11.71%.
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4.1.5 68-95-99.7 rule

Here, we present a useful rule of thumb for the probability of falling within 1, 2, and 3 standard
deviations of the mean in the normal distribution. This will be useful in a wide range of practical
settings, especially when trying to make a quick estimate without a calculator or Z-table.

T T 1
u-3c p-20 p-o ] p+o p+2c u+30

Figure 4.7: Probabilities for falling within 1, 2, and 3 standard deviations of the
mean in a normal distribution.

GUIDED PRACTICE 4.20

Use software, a calculator, or a probability table to confirm that about 68%, 95%, and 99.7% of
observations fall within 1, 2, and 3, standard deviations of the mean in the normal distribution,
respectively. For instance, first find the area that falls between Z = —1 and Z = 1, which should
have an area of about 0.68. Similarly there should be an area of about 0.95 between Z = —2 and
Z =2

It is possible for a normal random variable to fall 4, 5, or even more standard deviations from
the mean. However, these occurrences are very rare if the data are nearly normal. The probability of
being further than 4 standard deviations from the mean is about 1-in-15,000. For 5 and 6 standard
deviations, it is about 1-in-2 million and 1-in-500 million, respectively.

GUIDED PRACTICE 4.21

SAT scores closely follow the normal model with mean y = 1100 and standard deviation o = 200.'°
(a) About what percent of test takers score 700 to 15007
(b) What percent score between 1100 and 15007

15First draw the pictures. Using software, we get 0.6827 within 1 standard deviation, 0.9545 within 2 standard
deviations, and 0.9973 within 3 standard deviations.

16(a) 700 and 1500 represent two standard deviations below and above the mean, which means about 95% of test
takers will score between 700 and 1500. (b) We found that 700 to 1500 represents about 95% of test takers. These test
takers would be evenly split by the center of the distribution, 1100, so %% = 47.5% of all test takers score between
1100 and 1500.
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Exercises

4.1 Area under the curve, Part I. What percent of a standard normal distribution N(u = 0,0 = 1) is
found in each region? Be sure to draw a graph.

(a) Z < —1.35 (b) Z > 1.48 (c) —04< Z <15 d) 2] >2

4.2 Area under the curve, Part Il. What percent of a standard normal distribution N(p = 0,6 = 1) is
found in each region? Be sure to draw a graph.

(a) Z>—1.13 (b) Z <0.18 (c) Z>8 d) |Z] <05

4.3 GRE scores, Part |. Sophia who took the Graduate Record Examination (GRE) scored 160 on the Ver-
bal Reasoning section and 157 on the Quantitative Reasoning section. The mean score for Verbal Reasoning
section for all test takers was 151 with a standard deviation of 7, and the mean score for the Quantitative
Reasoning was 153 with a standard deviation of 7.67. Suppose that both distributions are nearly normal.
(a) Write down the short-hand for these two normal distributions.

(b) What is Sophia’s Z-score on the Verbal Reasoning section? On the Quantitative Reasoning section?
Draw a standard normal distribution curve and mark these two Z-scores.

) What do these Z-scores tell you?
(d) Relative to others, which section did she do better on?
) Find her percentile scores for the two exams.

)

What percent of the test takers did better than her on the Verbal Reasoning section? On the Quantitative
Reasoning section?

Explain why simply comparing raw scores from the two sections could lead to an incorrect conclusion
g y y g
as to which section a student did better on.

(h) If the distributions of the scores on these exams are not nearly normal, would your answers to parts (b)
- (f) change? Explain your reasoning.

4.4 Triathlon times, Part I. In triathlons, it is common for racers to be placed into age and gender groups.
Friends Leo and Mary both completed the Hermosa Beach Triathlon, where Leo competed in the Men, Ages
30 - 34 group while Mary competed in the Women, Ages 25 - 29 group. Leo completed the race in 1:22:28
(4948 seconds), while Mary completed the race in 1:31:53 (5513 seconds). Obviously Leo finished faster,
but they are curious about how they did within their respective groups. Can you help them? Here is some
information on the performance of their groups:

e The finishing times of the Men, Ages 30 - 34 group has a mean of 4313 seconds with a standard
deviation of 583 seconds.

e The finishing times of the Women, Ages 25 - 29 group has a mean of 5261 seconds with a standard
deviation of 807 seconds.

e The distributions of finishing times for both groups are approximately Normal.
Remember: a better performance corresponds to a faster finish.
(a) Write down the short-hand for these two normal distributions.
(b) What are the Z-scores for Leo’s and Mary’s finishing times? What do these Z-scores tell you?
(c
(d
(e
(f

Did Leo or Mary rank better in their respective groups? Explain your reasoning.
What percent of the triathletes did Leo finish faster than in his group?
What percent of the triathletes did Mary finish faster than in her group?

—_ N D D

If the distributions of finishing times are not nearly normal, would your answers to parts (b) - (e) change?
Explain your reasoning.

4.5 GRE scores, Part Il. In Exercise 4.3 we saw two distributions for GRE scores: N(u = 151,06 = 7) for
the verbal part of the exam and N(u = 153,0 = 7.67) for the quantitative part. Use this information to
compute each of the following:

(a) The score of a student who scored in the 80*" percentile on the Quantitative Reasoning section.

(b) The score of a student who scored worse than 70% of the test takers in the Verbal Reasoning section.
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4.6 Triathlon times, Part Il. In Exercise 4.4 we saw two distributions for triathlon times: N(u = 4313,0 =
583) for Men, Ages 30 - 34 and N(u = 5261, = 807) for the Women, Ages 25 - 29 group. Times are listed
in seconds. Use this information to compute each of the following:

(a) The cutoff time for the fastest 5% of athletes in the men’s group, i.e. those who took the shortest 5%
of time to finish.

(b) The cutoff time for the slowest 10% of athletes in the women’s group.

4.7 LA weather, Part |. The average daily high temperature in June in LA is 77°F with a standard deviation
of 5°F. Suppose that the temperatures in June closely follow a normal distribution.

(a) What is the probability of observing an 83°F temperature or higher in LA during a randomly chosen
day in June?

(b) How cool are the coldest 10% of the days (days with lowest average high temperature) during June in
LA?

4.8 CAPM. The Capital Asset Pricing Model (CAPM) is a financial model that assumes returns on a
portfolio are normally distributed. Suppose a portfolio has an average annual return of 14.7% (i.e. an
average gain of 14.7%) with a standard deviation of 33%. A return of 0% means the value of the portfolio
doesn’t change, a negative return means that the portfolio loses money, and a positive return means that
the portfolio gains money.

(a) What percent of years does this portfolio lose money, i.e. have a return less than 0%?
(b) What is the cutoff for the highest 15% of annual returns with this portfolio?

4.9 LA weather, Part Il. Exercise 4.7 states that average daily high temperature in June in LA is 77°F with
a standard deviation of 5°F, and it can be assumed that they to follow a normal distribution. We use the
following equation to convert °F (Fahrenheit) to °C (Celsius):

C:(F732)><g.

(a) Write the probability model for the distribution of temperature in °C in June in LA.

(b) What is the probability of observing a 28°C (which roughly corresponds to 83°F) temperature or higher
in June in LA? Calculate using the °C model from part (a).

(c) Did you get the same answer or different answers in part (b) of this question and part (a) of Exercise 4.77
Are you surprised? Explain.

(d) Estimate the IQR of the temperatures (in °C) in June in LA.

4.10 Find the SD. Cholesterol levels for women aged 20 to 34 follow an approximately normal distribution
with mean 185 milligrams per deciliter (mg/dl). Women with cholesterol levels above 220 mg/dl are con-
sidered to have high cholesterol and about 18.5% of women fall into this category. What is the standard
deviation of the distribution of cholesterol levels for women aged 20 to 347
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4.2 Geometric distribution

How long should we expect to flip a coin until it turns up heads? Or how many times should
we expect to roll a die until we get a 17 These questions can be answered using the geometric
distribution. We first formalize each trial — such as a single coin flip or die toss — using the Bernoulli
distribution, and then we combine these with our tools from probability (Chapter 3) to construct
the geometric distribution.

4.2.1 Bernoulli distribution

Many health insurance plans in the United States have a deductible, where the insured individ-
ual is responsible for costs up to the deductible, and then the costs above the deductible are shared
between the individual and insurance company for the remainder of the year.

Suppose a health insurance company found that 70% of the people they insure stay below their
deductible in any given year. Each of these people can be thought of as a trial. We label a person a
success if her healthcare costs do not exceed the deductible. We label a person a failure if she does
exceed her deductible in the year. Because 70% of the individuals will not hit their deductible, we
denote the probability of a success as p = 0.7. The probability of a failure is sometimes denoted
with ¢ = 1 — p, which would be 0.3 in for the insurance example.

When an individual trial only has two possible outcomes, often labeled as success or failure,
it is called a Bernoulli random variable. We chose to label a person who does not hit her
deductible as a “success” and all others as “failures”. However, we could just as easily have reversed
these labels. The mathematical framework we will build does not depend on which outcome is
labeled a success and which a failure, as long as we are consistent.

Bernoulli random variables are often denoted as 1 for a success and 0 for a failure. In addition
to being convenient in entering data, it is also mathematically handy. Suppose we observe ten trials:

1110100110
Then the sample proportion, p, is the sample mean of these observations:

# of successes  1+1+1+0+1+0+0+1+1+0

# of trials 10 0.6

ﬁ:

This mathematical inquiry of Bernoulli random variables can be extended even further. Because 0
and 1 are numerical outcomes, we can define the mean and standard deviation of a Bernoulli random
variable. (See Exercises 4.15 and 4.16.)

BERNOULLI RANDOM VARIABLE

If X is a random variable that takes value 1 with probability of success p and 0 with probability
1 —p, then X is a Bernoulli random variable with mean and standard deviation

B=p o=+/p(l—p)

In general, it is useful to think about a Bernoulli random variable as a random process with
only two outcomes: a success or failure. Then we build our mathematical framework using the
numerical labels 1 and 0 for successes and failures, respectively.
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4.2.2 Geometric distribution

The geometric distribution is used to describe how many trials it takes to observe a success.
Let’s first look at an example.

EXAMPLE 4.22

Suppose we are working at the insurance company and need to find a case where the person did
not exceed her (or his) deductible as a case study. If the probability a person will not exceed her
deductible is 0.7 and we are drawing people at random, what are the chances that the first person
will not have exceeded her deductible, i.e. be a success? The second person? The third? What
about we pull n — 1 cases before we find the first success, i.e. the first success is the n* person? (If
the first success is the fifth person, then we say n = 5.)

The probability of stopping after the first person is just the chance the first person will not hit her
(or his) deductible: 0.7. The probability the second person is the first to hit her deductible is

P(second person is the first to hit deductible)
= P(the first won’t, the second will) = (0.3)(0.7) = 0.21

Likewise, the probability it will be the third case is (0.3)(0.3)(0.7) = 0.063.

If the first success is on the n'* person, then there are n — 1 failures and finally 1 success, which
corresponds to the probability (0.3)"71(0.7). This is the same as (1 — 0.7)"~1(0.7).

Example 4.22 illustrates what the geometric distribution, which describes the waiting time
until a success for independent and identically distributed (iid) Bernoulli random variables.
In this case, the independence aspect just means the individuals in the example don’t affect each
other, and identical means they each have the same probability of success.

The geometric distribution from Example 4.22 is shown in Figure 4.8. In general, the proba-
bilities for a geometric distribution decrease exponentially fast.

0.6

Probability
o
5

o
N
I

0.0-

1 2 3 4 5 6 7 8
Number of Trials Until a Success for p = 0.7

Figure 4.8: The geometric distribution when the probability of success is p = 0.7.

While this text will not derive the formulas for the mean (expected) number of trials needed
to find the first success or the standard deviation or variance of this distribution, we present general
formulas for each.
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GEOMETRIC DISTRIBUTION

If the probability of a success in one trial is p and the probability of a failure is 1 — p, then the
probability of finding the first success in the n'" trial is given by

(1-p)"'p

The mean (i.e. expected value), variance, and standard deviation of this wait time are given by

1
p==
p p? p?

It is no accident that we use the symbol p for both the mean and expected value. The mean
and the expected value are one and the same.

It takes, on average, 1/p trials to get a success under the geometric distribution. This mathe-
matical result is consistent with what we would expect intuitively. If the probability of a success is
high (e.g. 0.8), then we don’t usually wait very long for a success: 1/0.8 = 1.25 trials on average.
If the probability of a success is low (e.g. 0.1), then we would expect to view many trials before we
see a success: 1/0.1 = 10 trials.

GUIDED PRACTICE 4.23

The probability that a particular case would not exceed their deductible is said to be 0.7. If we were
to examine cases until we found one that where the person did not hit her deductible, how many
cases should we expect to check?'”

EXAMPLE 4.24
What is the chance that we would find the first success within the first 3 cases?

This is the chance it is the first (n = 1), second (n = 2), or third (n = 3) case is the first success,
which are three disjoint outcomes. Because the individuals in the sample are randomly sampled
from a large population, they are independent. We compute the probability of each case and add
the separate results:

P(n=1,2, or 3)

=Pn=1)+P(n=2)+ P(n=3)
= (0.3)71(0.7) + (0.3)271(0.7) 4 (0.3)371(0.7)
=0.973

There is a probability of 0.973 that we would find a successful case within 3 cases.

GUIDED PRACTICE 4.25
Determine a more clever way to solve Example 4.24. Show that you get the same result.'®

17"We would expect to see about 1/0.7 ~ 1.43 individuals to find the first success.
18First find the probability of the complement: P(no success in first 3 trials) = 0.33 = 0.027. Next, compute one
minus this probability: 1 — P(no success in 3 trials) = 1 — 0.027 = 0.973.
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EXAMPLE 4.26

Suppose a car insurer has determined that 88% of its drivers will not exceed their deductible in a
given year. If someone at the company were to randomly draw driver files until they found one that
had not exceeded their deductible, what is the expected number of drivers the insurance employee
must check? What is the standard deviation of the number of driver files that must be drawn?

In this example, a success is again when someone will not exceed the insurance deductible, which
has probability p = 0.88. The expected number of people to be checked is 1/p = 1/0.88 = 1.14 and
the standard deviation is /(1 — p)/p? = 0.39.

GUIDED PRACTICE 4.27

Using the results from Example 4.26, y = 1.14 and ¢ = 0.39, would it be appropriate to use the
normal model to find what proportion of experiments would end in 3 or fewer trials?'’

The independence assumption is crucial to the geometric distribution’s accurate description
of a scenario. Mathematically, we can see that to construct the probability of the success on the
nt" trial, we had to use the Multiplication Rule for Independent Processes. It is no simple task to
generalize the geometric model for dependent trials.

19No. The geometric distribution is always right skewed and can never be well-approximated by the normal model.
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Exercises

4.11 s it Bernoulli? Determine if each trial can be considered an independent Bernoulli trial for the
following situations.

(a) Cards dealt in a hand of poker.
(b) Outcome of each roll of a die.

4.12  With and without replacement. In the following situations assume that half of the specified popula-
tion is male and the other half is female.

(a) Suppose you're sampling from a room with 10 people. What is the probability of sampling two females in
a row when sampling with replacement? What is the probability when sampling without replacement?

(b) Now suppose you're sampling from a stadium with 10,000 people. What is the probability of sampling
two females in a row when sampling with replacement? What is the probability when sampling without
replacement?

(c) We often treat individuals who are sampled from a large population as independent. Using your findings
from parts (a) and (b), explain whether or not this assumption is reasonable.

4.13 Eye color, Part I. A husband and wife both have brown eyes but carry genes that make it possible for
their children to have brown eyes (probability 0.75), blue eyes (0.125), or green eyes (0.125).

(a) What is the probability the first blue-eyed child they have is their third child? Assume that the eye
colors of the children are independent of each other.
(b) On average, how many children would such a pair of parents have before having a blue-eyed child? What

is the standard deviation of the number of children they would expect to have until the first blue-eyed
child?

4.14 Defective rate. A machine that produces a special type of transistor (a component of computers) has
a 2% defective rate. The production is considered a random process where each transistor is independent of
the others.

(a) What is the probability that the 10" transistor produced is the first with a defect?
(b) What is the probability that the machine produces no defective transistors in a batch of 1007

(c) On average, how many transistors would you expect to be produced before the first with a defect? What
is the standard deviation?

(d) Another machine that also produces transistors has a 5% defective rate where each transistor is produced
independent of the others. On average how many transistors would you expect to be produced with this
machine before the first with a defect? What is the standard deviation?

(e) Based on your answers to parts (c) and (d), how does increasing the probability of an event affect the
mean and standard deviation of the wait time until success?

4.15 Bernoulli, the mean. Use the probability rules from Section 3.4 to derive the mean of a Bernoulli
random variable, i.e. a random variable X that takes value 1 with probability p and value 0 with probability
1 — p. That is, compute the expected value of a generic Bernoulli random variable.

4.16 Bernoulli, the standard deviation. Use the probability rules from Section 3.4 to derive the standard
deviation of a Bernoulli random variable, i.e. a random variable X that takes value 1 with probability p
and value 0 with probability 1 — p. That is, compute the square root of the variance of a generic Bernoulli
random variable.
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4.3 Binomial distribution

The binomial distribution is used to describe the number of successes in a fixed number of
trials. This is different from the geometric distribution, which described the number of trials we
must wait before we observe a success.

4.3.1 The binomial distribution

Let’s again imagine ourselves back at the insurance agency where 70% of individuals do not exceed
their deductible.

EXAMPLE 4.28

Suppose the insurance agency is considering a random sample of four individuals they insure. What
is the chance exactly one of them will exceed the deductible and the other three will not? Let’s call
the four people Ariana (A), Brittany (B), Carlton (C), and Damian (D) for convenience.

Let’s consider a scenario where one person exceeds the deductible:

P(A = exceed, B =not, C'=not, D = not)
= P(A = exceed) P(B =not) P(C =not) P(D = not)
= (0.3)(0.7)(0.7)(0.7)
= (0.7)3(0.3)*
=0.103

But there are three other scenarios: Brittany, Carlton, or Damian could have been the one to exceed
the deductible. In each of these cases, the probability is again (0.7)3(0.3)*. These four scenarios
exhaust all the possible ways that exactly one of these four people could have exceeded the deductible,
so the total probability is 4 x (0.7)3(0.3)! = 0.412.

GUIDED PRACTICE 4.29

Verify that the scenario where Brittany is the only one exceed the deductible has probability
(0.7)2(0.3)1. 2V

The scenario outlined in Example 4.28 is an example of a binomial distribution scenario. The
binomial distribution describes the probability of having exactly k successes in n independent
Bernoulli trials with probability of a success p (in Example 4.28, n =4, k = 3, p = 0.7). We would
like to determine the probabilities associated with the binomial distribution more generally, i.e. we
want a formula where we can use n, k, and p to obtain the probability. To do this, we reexamine
each part of Example 4.28.

There were four individuals who could have been the one to exceed the deductible, and each of
these four scenarios had the same probability. Thus, we could identify the final probability as

[# of scenarios] x P(single scenario)

The first component of this equation is the number of ways to arrange the k = 3 successes among
the n = 4 trials. The second component is the probability of any of the four (equally probable)
scenarios.

20 P(A = not, B = exceed, C' =not, D = not) = (0.7)(0.3)(0.7)(0.7) = (0.7)3(0.3)*.
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Consider P(single scenario) under the general case of k successes and n — k failures in the n
trials. In any such scenario, we apply the Multiplication Rule for independent events:

pF—p)nk

This is our general formula for P(single scenario).
Secondly, we introduce a general formula for the number of ways to choose k successes in n
trials, i.e. arrange k successes and n — k failures:

(1) =

The quantity (Z) is read n choose k.?! The exclamation point notation (e.g. k!) denotes a factorial
expression.

ol=1
=1
20=2x1=2

31=3x2x1=6
4! =4x3x2x1=24

nl=nxn-1)x..x3x2x1

Using the formula, we can compute the number of ways to choose k = 3 successes in n = 4 trials:

4\ 4! _47!_4><3><2><1_4
3/ 31(4—3) 3111 (3x2x1)(1)

This result is exactly what we found by carefully thinking of each possible scenario in Example 4.28.
Substituting n choose k for the number of scenarios and p¥(1 — p)"~* for the single scenario
probability yields the general binomial formula.

BINOMIAL DISTRIBUTION

Suppose the probability of a single trial being a success is p. Then the probability of observing
exactly k successes in n independent trials is given by

(Z)pk(l —p)F = k!(nn—ik)!pk(l -p)*

The mean, variance, and standard deviation of the number of observed successes are

1= np o® =np(1 —p) o= +/np(1—p)

IS IT BINOMIAL? FOUR CONDITIONS TO CHECK.

(1) The trials are independent.

) The number of trials, n, is fixed.

) Each trial outcome can be classified as a success or failure.
)

(2
(3
(4) The probability of a success, p, is the same for each trial.

210ther notation for n choose k includes »,Cy, C¥, and C(n, k).
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EXAMPLE 4.30

What is the probability that 3 of 8 randomly selected individuals will have exceeded the insurance
deductible, i.e. that 5 of 8 will not exceed the deductible? Recall that 70% of individuals will not
exceed the deductible.

We would like to apply the binomial model, so we check the conditions. The number of trials is
fixed (n = 8) (condition 2) and each trial outcome can be classified as a success or failure (condition
3). Because the sample is random, the trials are independent (condition 1) and the probability of a
success is the same for each trial (condition 4).

In the outcome of interest, there are k& = 5 successes in n = 8 trials (recall that a success is an
individual who does mot exceed the deductible, and the probability of a success is p = 0.7. So the
probability that 5 of 8 will not exceed the deductible and 3 will exceed the deductible is given by

<§) (0.7)°(1 — 0.7)875 = 5!(5813)!(0.7)5(1 —0.7)875
8! f
= ﬁ(0.7) (0.3)3

Dealing with the factorial part:

8l 8XTx6x5x4x3x2x1 8XT7Tx6
513 (5x4x3x2x1)(3x2x1) 3x2x1

56

Using (0.7)%(0.3)® ~ 0.00454, the final probability is about 56 x 0.00454 ~ 0.254.

COMPUTING BINOMIAL PROBABILITIES

The first step in using the binomial model is to check that the model is appropriate. The second
step is to identify n, p, and k. As the last stage use software or the formulas to determine the
probability, then interpret the results.

If you must do calculations by hand, it’s often useful to cancel out as many terms as possible
in the top and bottom of the binomial coefficient.

GUIDED PRACTICE 4.31

If we randomly sampled 40 case files from the insurance agency discussed earlier, how many of the
cases would you expect to not have exceeded the deductible in a given year? What is the standard
deviation of the number that would not have exceeded the deductible???

GUIDED PRACTICE 4.32

The probability that a random smoker will develop a severe lung condition in his or her lifetime is
about 0.3. If you have 4 friends who smoke, are the conditions for the binomial model satisfied?**

22We are asked to determine the expected number (the mean) and the standard deviation, both of which can be
directly computed from the formulas: = np =40 X% 0.7 =28 and 0 = \/np(l —p) =+/40 x 0.7 x 0.3 = 2.9. Because
very roughly 95% of observations fall within 2 standard deviations of the mean (see Section 2.1.4), we would probably
observe at least 22 but fewer than 34 individuals in our sample who would not exceed the deductible.

230ne possible answer: if the friends know each other, then the independence assumption is probably not satisfied.
For example, acquaintances may have similar smoking habits, or those friends might make a pact to quit together.
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GUIDED PRACTICE 4.33

Suppose these four friends do not know each other and we can treat them as if they were a random
sample from the population. Is the binomial model appropriate? What is the probability that?*
(a) None of them will develop a severe lung condition?

(b) One will develop a severe lung condition?

(¢) That no more than one will develop a severe lung condition?

GUIDED PRACTICE 4.34

What is the probability that at least 2 of your 4 smoking friends will develop a severe lung condition
in their lifetimes??”

GUIDED PRACTICE 4.35

Suppose you have 7 friends who are smokers and they can be treated as a random sample of smok-

ers.”0

(a) How many would you expect to develop a severe lung condition, i.e. what is the mean?

(b) What is the probability that at most 2 of your 7 friends will develop a severe lung condition.

Next we consider the first term in the binomial probability, n choose k under some special
scenarios.

GUIDED PRACTICE 4.36
Why is it true that (7) =1 and (7') =1 for any number n?*’

n
n

GUIDED PRACTICE 4.37

How many ways can you arrange one success and n — 1 failures in n trials? How many ways can you
arrange n — 1 successes and one failure in n trials?*®

24To check if the binomial model is appropriate, we must verify the conditions. (i) Since we are supposing we can
treat the friends as a random sample, they are independent. (ii) We have a fixed number of trials (n = 4). (iii) Each
outcome is a success or failure. (iv) The probability of a success is the same for each trials since the individuals are like a
random sample (p = 0.3 if we say a “success” is someone getting a lung condition, a morbid choice). Compute parts (a)
and (b) using the binomial formula: P(0) = (£)(0.3)°(0.7)* =1 x 1 x 0.7% = 0.2401, P(1) = (1)(0.3)'(0.7)3 = 0.4116.
Note: 0! = 1. Part (c) can be computed as the sum of parts (a) and (b): P(0) + P(1) = 0.2401 + 0.4116 = 0.6517.
That is, there is about a 65% chance that no more than one of your four smoking friends will develop a severe lung
condition.

25The complement (no more than one will develop a severe lung condition) as computed in Guided Practice 4.33
as 0.6517, so we compute one minus this value: 0.3483.

26(a) u=0.3x7=2.1. (b) P(0, 1, or 2 develop severe lung condition) = P(k = 0)+P(k = 1)+ P(k = 2) = 0.6471.

2"Frame these expressions into words. How many different ways are there to arrange 0 successes and n failures in
n trials? (1 way.) How many different ways are there to arrange n successes and 0 failures in n trials? (1 way.)

280ne success and n — 1 failures: there are exactly n unique places we can put the success, so there are n ways to
arrange one success and n — 1 failures. A similar argument is used for the second question. Mathematically, we show
these results by verifying the following two equations:

G):" (ni1):n
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4.3.2 Normal approximation to the binomial distribution

The binomial formula is cumbersome when the sample size (n) is large, particularly when we
consider a range of observations. In some cases we may use the normal distribution as an easier and
faster way to estimate binomial probabilities.

EXAMPLE 4.38

Approximately 15% of the US population smokes cigarettes. A local government believed their
community had a lower smoker rate and commissioned a survey of 400 randomly selected individuals.
The survey found that only 42 of the 400 participants smoke cigarettes. If the true proportion of
smokers in the community was really 15%, what is the probability of observing 42 or fewer smokers
in a sample of 400 people?

We leave the usual verification that the four conditions for the binomial model are valid as an
exercise.

The question posed is equivalent to asking, what is the probability of observing k = 0, 1, 2, ..., or
42 smokers in a sample of n = 400 when p = 0.157 We can compute these 43 different probabilities
and add them together to find the answer:

Plk=0ork=1or --- or k =42)
=Pk=0)+Pk=1)+---+ Pk =42)
= 0.0054

If the true proportion of smokers in the community is p = 0.15, then the probability of observing 42
or fewer smokers in a sample of n = 400 is 0.0054.

The computations in Example 4.38 are tedious and long. In general, we should avoid such
work if an alternative method exists that is faster, easier, and still accurate. Recall that calculating
probabilities of a range of values is much easier in the normal model. We might wonder, is it
reasonable to use the normal model in place of the binomial distribution? Surprisingly, yes, if
certain conditions are met.

GUIDED PRACTICE 4.39

Here we consider the binomial model when the probability of a success is p = 0.10. Figure 4.9 shows
four hollow histograms for simulated samples from the binomial distribution using four different
sample sizes: n = 10,30,100,300. What happens to the shape of the distributions as the sample
size increases? What distribution does the last hollow histogram resemble?>’

NORMAL APPROXIMATION OF THE BINOMIAL DISTRIBUTION

The binomial distribution with probability of success p is nearly normal when the sample size
n is sufficiently large that np and n(1 — p) are both at least 10. The approximate normal
distribution has parameters corresponding to the mean and standard deviation of the binomial
distribution:

n=mnp g = np(l—p)

The normal approximation may be used when computing the range of many possible successes.
For instance, we may apply the normal distribution to the setting of Example 4.38.

29The distribution is transformed from a blocky and skewed distribution into one that rather resembles the normal
distribution in last hollow histogram.
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n =10 n =30
I T T T 1 I T T T 1
0 5 10 15 20 10 20 30 40 50
n = 100 n = 300

Figure 4.9: Hollow histograms of samples from the binomial model when p = 0.10.
The sample sizes for the four plots are n = 10, 30, 100, and 300, respectively.

EXAMPLE 4.40

How can we use the normal approximation to estimate the probability of observing 42 or fewer
smokers in a sample of 400, if the true proportion of smokers is p = 0.157

Showing that the binomial model is reasonable was a suggested exercise in Example 4.38. We also
verify that both np and n(1 — p) are at least 10:

® np = 400 x 0.15 = 60 n(1 —p) = 400 x 0.85 = 340

With these conditions checked, we may use the normal approximation in place of the binomial
distribution using the mean and standard deviation from the binomial model:

©w=mnp==60 o=+np(l—p)="714
We want to find the probability of observing 42 or fewer smokers using this model.

GUIDED PRACTICE 4.41

@ Use the normal model N(u = 60,0 = 7.14) to estimate the probability of observing 42 or fewer
smokers. Your answer should be approximately equal to the solution of Example 4.38: 0.0054. %"

30Compute the Z-score first: Z = %%ZO = —2.52. The corresponding left tail area is 0.0059.
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4.3.3 The normal approximation breaks down on small intervals

The normal approximation to the binomial distribution tends to perform poorly when estimat-
ing the probability of a small range of counts, even when the conditions are met.

Suppose we wanted to compute the probability of observing 49, 50, or 51 smokers in 400 when
p = 0.15. With such a large sample, we might be tempted to apply the normal approximation
and use the range 49 to 51. However, we would find that the binomial solution and the normal
approximation notably differ:

Binomial: 0.0649 Normal: 0.0421

We can identify the cause of this discrepancy using Figure 4.10, which shows the areas representing
the binomial probability (outlined) and normal approximation (shaded). Notice that the width of
the area under the normal distribution is 0.5 units too slim on both sides of the interval.

Figure 4.10: A normal curve with the area between 49 and 51 shaded. The outlined
area represents the exact binomial probability.

IMPROVING THE NORMAL APPROXIMATION FOR THE BINOMIAL DISTRIBUTION

The normal approximation to the binomial distribution for intervals of values is usually improved
if cutoff values are modified slightly. The cutoff values for the lower end of a shaded region should
be reduced by 0.5, and the cutoff value for the upper end should be increased by 0.5.

The tip to add extra area when applying the normal approximation is most often useful when
examining a range of observations. In the example above, the revised normal distribution estimate
is 0.0633, much closer to the exact value of 0.0649. While it is possible to also apply this correction
when computing a tail area, the benefit of the modification usually disappears since the total interval
is typically quite wide.
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Exercises

4.17 Underage drinking, Part I. Data collected by the Substance Abuse and Mental Health Services
Administration (SAMSHA) suggests that 69.7% of 18-20 year olds consumed alcoholic beverages in any
. 31

given year.

(a) Suppose a random sample of ten 18-20 year olds is taken. Is the use of the binomial distribution
appropriate for calculating the probability that exactly six consumed alcoholic beverages? Explain.

(b) Calculate the probability that exactly 6 out of 10 randomly sampled 18- 20 year olds consumed an
alcoholic drink.

(¢) What is the probability that exactly four out of ten 18-20 year olds have not consumed an alcoholic
beverage?

(d) What is the probability that at most 2 out of 5 randomly sampled 18-20 year olds have consumed
alcoholic beverages?

(e) What is the probability that at least 1 out of 5 randomly sampled 18-20 year olds have consumed
alcoholic beverages?

4.18 Chicken pox, Part I. The National Vaccine Information Center estimates that 90% of Americans have
had chickenpox by the time they reach adulthood.?”

(a) Suppose we take a random sample of 100 American adults. Is the use of the binomial distribution
appropriate for calculating the probability that exactly 97 out of 100 randomly sampled American
adults had chickenpox during childhood? Explain.

(b) Calculate the probability that exactly 97 out of 100 randomly sampled American adults had chickenpox
during childhood.

(c) What is the probability that exactly 3 out of a new sample of 100 American adults have not had
chickenpox in their childhood?

(d) What is the probability that at least 1 out of 10 randomly sampled American adults have had chickenpox?

(e) What is the probability that at most 3 out of 10 randomly sampled American adults have not had
chickenpox?

4.19 Underage drinking, Part Il. We learned in Exercise 4.17 that about 70% of 18-20 year olds consumed
alcoholic beverages in any given year. We now consider a random sample of fifty 18-20 year olds.

(a) How many people would you expect to have consumed alcoholic beverages? And with what standard
deviation?
(b) Would you be surprised if there were 45 or more people who have consumed alcoholic beverages?

(c) What is the probability that 45 or more people in this sample have consumed alcoholic beverages? How
does this probability relate to your answer to part (b)?

4.20 Chickenpox, Part Il. We learned in Exercise 4.18 that about 90% of American adults had chickenpox
before adulthood. We now consider a random sample of 120 American adults.

(a) How many people in this sample would you expect to have had chickenpox in their childhood? And
with what standard deviation?
(b) Would you be surprised if there were 105 people who have had chickenpox in their childhood?

(c) What is the probability that 105 or fewer people in this sample have had chickenpox in their childhood?
How does this probability relate to your answer to part (b)?

4.21 Game of dreidel. A dreidel is a four-sided spinning top with the Hebrew letters nun, gimel, hei, and
shin, one on each side. Each side is equally likely to come up in a single spin of the dreidel. Suppose you
spin a dreidel three times. Calculate the probability of getting

a) at least one nun? ‘
\

(a)
(b) exactly 2 nuns? g
| F

(c
(d) at most 2 gimels? ‘ 4

Photo by Staccabees, cropped
(http://flic.kr/p/TgLZTT)

exactly 1 hei? CC BY 2.0 license

31SAMHSA, Office of Applied Studies, National Survey on Drug Use and Health, 2007 and 2008.
32National Vaccine Information Center, Chickenpox, The Discase & The Vaccine Fact Sheet.
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4.3. BINOMIAL DISTRIBUTION

4.22  Arachnophobia. A Gallup Poll found that 7% of teenagers (ages 13 to 17) suffer from arachnophobia
and are extremely afraid of spiders. At a summer camp there are 10 teenagers sleeping in each tent. Assume
that these 10 teenagers are independent of each other.””

(a) Calculate the probability that at least one of them suffers from arachnophobia.

(b) Calculate the probability that exactly 2 of them suffer from arachnophobia.

(c) Calculate the probability that at most 1 of them suffers from arachnophobia.

(d) If the camp counselor wants to make sure no more than 1 teenager in each tent is afraid of spiders, does
it seem reasonable for him to randomly assign teenagers to tents?

4.23 Eye color, Part Il. Exercise 4.13 introduces a husband and wife with brown eyes who have 0.75
probability of having children with brown eyes, 0.125 probability of having children with blue eyes, and
0.125 probability of having children with green eyes.

(a) What is the probability that their first child will have green eyes and the second will not?

—~

b) What is the probability that exactly one of their two children will have green eyes?
c)

d) If they have six children, what is the probability that at least one will have green eyes?
e) What is the probability that the first green eyed child will be the 4" child?

f)

If they have six children, what is the probability that exactly two will have green eyes?

P N

Would it be considered unusual if only 2 out of their 6 children had brown eyes?

4.24 Sickle cell anemia. Sickle cell anemia is a genetic blood disorder where red blood cells lose their
flexibility and assume an abnormal, rigid, “sickle” shape, which results in a risk of various complications. If
both parents are carriers of the disease, then a child has a 25% chance of having the disease, 50% chance of
being a carrier, and 25% chance of neither having the disease nor being a carrier. If two parents who are
carriers of the disease have 3 children, what is the probability that

(a) two will have the disease?
(b) none will have the disease?

(c) at least one will neither have the disease nor be a carrier?
(d) the first child with the disease will the be 3" child?

4.25 Exploring permutations. The formula for the number of ways to arrange n objects is n! =n x (n —
1) X --- x 2 x 1. This exercise walks you through the derivation of this formula for a couple of special cases.

A small company has five employees: Anna, Ben, Carl, Damian, and Eddy. There are five parking
spots in a row at the company, none of which are assigned, and each day the employees pull into a random
parking spot. That is, all possible orderings of the cars in the row of spots are equally likely.

(a) On a given day, what is the probability that the employees park in alphabetical order?

(b) If the alphabetical order has an equal chance of occurring relative to all other possible orderings, how
many ways must there be to arrange the five cars?

(¢) Now consider a sample of 8 employees instead. How many possible ways are there to order these 8
employees’ cars?

4.26  Male children. While it is often assumed that the probabilities of having a boy or a girl are the same,
the actual probability of having a boy is slightly higher at 0.51. Suppose a couple plans to have 3 kids.

(a) Use the binomial model to calculate the probability that two of them will be boys.

(b) Write out all possible orderings of 3 children, 2 of whom are boys. Use these scenarios to calculate the
same probability from part (a) but using the addition rule for disjoint outcomes. Confirm that your
answers from parts (a) and (b) match.

(c) If we wanted to calculate the probability that a couple who plans to have 8 kids will have 3 boys, briefly
describe why the approach from part (b) would be more tedious than the approach from part (a).

33Gallup Poll, What Frightens America’s Youth?, March 29, 2005.
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4.4 Negative binomial distribution

The geometric distribution describes the probability of observing the first success on the n*
trial. The negative binomial distribution is more general: it describes the probability of observ-
ing the k*" success on the nt" trial.

EXAMPLE 4.42

Each day a high school football coach tells his star kicker, Brian, that he can go home after he
successfully kicks four 35 yard field goals. Suppose we say each kick has a probability p of being
successful. If p is small — e.g. close to 0.1 — would we expect Brian to need many attempts before
he successfully kicks his fourth field goal?

We are waiting for the fourth success (k = 4). If the probability of a success (p) is small, then the
number of attempts (n) will probably be large. This means that Brian is more likely to need many
attempts before he gets k = 4 successes. To put this another way, the probability of n being small
is low.

To identify a negative binomial case, we check 4 conditions. The first three are common to the
binomial distribution.

IS IT NEGATIVE BINOMIAL? FOUR CONDITIONS TO CHECK

(1) The trials are independent.

) Each trial outcome can be classified as a success or failure.
) The probability of a success (p) is the same for each trial.
)

(2
(3
(4) The last trial must be a success.

GUIDED PRACTICE 4.43

Suppose Brian is very diligent in his attempts and he makes each 35 yard field goal with probability
p = 0.8. Take a guess at how many attempts he would need before making his fourth kick.**

EXAMPLE 4.44

In yesterday’s practice, it took Brian only 6 tries to get his fourth field goal. Write out each of the
possible sequence of kicks.

Because it took Brian six tries to get the fourth success, we know the last kick must have been a
success. That leaves three successful kicks and two unsuccessful kicks (we label these as failures)
that make up the first five attempts. There are ten possible sequences of these first five kicks, which
are shown in Figure 4.11. If Brian achieved his fourth success (k = 4) on his sixth attempt (n = 6),
then his order of successes and failures must be one of these ten possible sequences.

GUIDED PRACTICE 4.45

Each sequence in Figure 4.11 has exactly two failures and four successes with the last attempt always
being a success. If the probability of a success is p = 0.8, find the probability of the first sequence.®’

340ne possible answer: since he is likely to make each field goal attempt, it will take him at least 4 attempts but
probably not more than 6 or 7.
35The first sequence: 0.2 x 0.2 x 0.8 x 0.8 x 0.8 x 0.8 = 0.0164.
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Kick Attempt

1 2 3 4 5 6
1| FF § & 518
2| F 5 F 5 9|5
s P 5 5 & F|S
5| Lo oF 4 L4
6| 5 F 5 F S5
O B R Nl I
8| § & F F 5|5
9| & & F § Fl|g
w| 5 & 5 F F|S

Figure 4.11: The ten possible sequences when the fourth successful kick is on the
sixth attempt.

If the probability Brian kicks a 35 yard field goal is p = 0.8, what is the probability it takes
Brian exactly six tries to get his fourth successful kick? We can write this as
P(it takes Brian six tries to make four field goals)

= P(Brian makes three of his first five field goals, and he makes the sixth one)

= P(1°" sequence OR 2" sequence OR ... OR 10" sequence)
where the sequences are from Figure 4.11. We can break down this last probability into the sum of
ten disjoint possibilities:

P(1°" sequence OR 2" sequence OR ... OR 10" sequence)
= P(1°" sequence) + P(2"* sequence) + - - - + P(10"" sequence)

The probability of the first sequence was identified in Guided Practice 4.45 as 0.0164, and each of the
other sequences have the same probability. Since each of the ten sequence has the same probability,
the total probability is ten times that of any individual sequence.

The way to compute this negative binomial probability is similar to how the binomial problems
were solved in Section 4.3. The probability is broken into two pieces:

P(it takes Brian six tries to make four field goals)

= [Number of possible sequences] x P(Single sequence)

Each part is examined separately, then we multiply to get the final result.
We first identify the probability of a single sequence. One particular case is to first observe all
the failures (n — k of them) followed by the k successes:

P(Single sequence)

= P(n — k failures and then k successes)
=(1—p)"Fp*
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We must also identify the number of sequences for the general case. Above, ten sequences were
identified where the fourth success came on the sixth attempt. These sequences were identified by
fixing the last observation as a success and looking for all the ways to arrange the other observations.
In other words, how many ways could we arrange k — 1 successes in n — 1 trials? This can be found
using the n choose k coefficient but for n — 1 and k — 1 instead:

n—1\ (n—1)! B (n—1)!
(k—l) k=D ((n=1)=(k=1)  (k—1)!(n—k)

This is the number of different ways we can order k — 1 successes and n — k failures in n — 1 trials.
If the factorial notation (the exclamation point) is unfamiliar, see page 150.

NEGATIVE BINOMIAL DISTRIBUTION
The negative binomial distribution describes the probability of observing the k' success on the
nt? trial, where all trials are independent:

—1
P(the k™ success on the n'" trial) = (Z 1>pk(1 —p)k

The value p represents the probability that an individual trial is a success.

EXAMPLE 4.46

Show using the formula for the negative binomial distribution that the probability Brian kicks his
fourth successful field goal on the sixth attempt is 0.164.

@ The probability of a single success is p = 0.8, the number of successes is kK = 4, and the number of
necessary attempts under this scenario is n = 6.

n—1\ 4 nek _ 9! 4 2 _ _
(k—l)p (1-p) = 3!2!(0.8) (0.2) = 10x0.0164 = 0.164

GUIDED PRACTICE 4.47

@ The negative binomial distribution requires that each kick attempt by Brian is independent. Do you
think it is reasonable to suggest that each of Brian’s kick attempts are independent??°

GUIDED PRACTICE 4.48

@ Assume Brian’s kick attempts are independent. What is the probability that Brian will kick his
fourth field goal within 5 attempts?®”

36 Answers may vary. We cannot conclusively say they are or are not independent. However, many statistical
reviews of athletic performance suggests such attempts are very nearly independent.

371f his fourth field goal (k = 4) is within five attempts, it either took him four or five tries (n = 4 or n = 5). We
have p = 0.8 from earlier. Use the negative binomial distribution to compute the probability of n = 4 tries and n =5
tries, then add those probabilities together:

Pn=40Rn=5)=Pn=4)+ P(n=>5)

7 N . B B B
- (4 B 1>0.8 + (4 - 1)(0.8) (1-0.8)=1x041+4x0.082 = 0.41 + 0.33 = 0.74
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BINOMIAL VERSUS NEGATIVE BINOMIAL

In the binomial case, we typically have a fixed number of trials and instead consider the number
of successes. In the negative binomial case, we examine how many trials it takes to observe a
fixed number of successes and require that the last observation be a success.

GUIDED PRACTICE 4.49

On 70% of days, a hospital admits at least one heart attack patient. On 30% of the days, no heart
attack patients are admitted. Identify each case below as a binomial or negative binomial case, and
compute the probability.*®

(a) What is the probability the hospital will admit a heart attack patient on exactly three days this
week?

(b) What is the probability the second day with a heart attack patient will be the fourth day of the
week?

(¢c) What is the probability the fifth day of next month will be the first day with a heart attack
patient?

38In each part, p = 0.7. (a) The number of days is fixed, so this is binomial. The parameters are k¥ = 3 and
n = T7: 0.097. (b) The last “success” (admitting a heart attack patient) is fixed to the last day, so we should apply
the negative binomial distribution. The parameters are k = 2, n = 4: 0.132. (c) This problem is negative binomial
with £ = 1 and n = 5: 0.006. Note that the negative binomial case when k£ = 1 is the same as using the geometric
distribution.
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Exercises

4.27 Rolling a die. Calculate the following probabilities and indicate which probability distribution model
is appropriate in each case. You roll a fair die 5 times. What is the probability of rolling

(a) the first 6 on the fifth roll?

(b) exactly three 6s?

(¢) the third 6 on the fifth roll?

4.28 Playing darts. Calculate the following probabilities and indicate which probability distribution model
is appropriate in each case. A very good darts player can hit the bull’s eye (red circle in the center of the
dart board) 65% of the time. What is the probability that he

(a) hits the bullseye for the 10" time on the 15" try?

(b) hits the bullseye 10 times in 15 tries?

(c) hits the first bullseye on the third try?

4.29 Sampling at school. For a sociology class project you are asked to conduct a survey on 20 students
at your school. You decide to stand outside of your dorm’s cafeteria and conduct the survey on a random
sample of 20 students leaving the cafeteria after dinner one evening. Your dorm is comprised of 45% males
and 55% females.

(a) Which probability model is most appropriate for calculating the probability that the 4" person you
survey is the 2™¢ female? Explain.
(b) Compute the probability from part (a).

(c) The three possible scenarios that lead to 4*" person you survey being the 2"¢ female are
{M,M,F,F},{M,F,M,F}{F,M,M, F}

One common feature among these scenarios is that the last trial is always female. In the first three
trials there are 2 males and 1 female. Use the binomial coefficient to confirm that there are 3 ways of
ordering 2 males and 1 female.
(d) Use the findings presented in part (c) to explain why the formula for the coefficient for the negative
binomial is (7~]) while the formula for the binomial coefficient is (}).
4.30 Serving in volleyball. A not-so-skilled volleyball player has a 15% chance of making the serve, which
involves hitting the ball so it passes over the net on a trajectory such that it will land in the opposing team’s
court. Suppose that her serves are independent of each other.

(a) What is the probability that on the 10" try she will make her 3" successful serve?

(b) Suppose she has made two successful serves in nine attempts. What is the probability that her 10"
serve will be successful?

(c) Even though parts (a) and (b) discuss the same scenario, the probabilities you calculated should be
different. Can you explain the reason for this discrepancy?
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4.5 Poisson distribution

EXAMPLE 4.50

There are about 8 million individuals in New York City. How many individuals might we expect to
be hospitalized for acute myocardial infarction (AMI), i.e. a heart attack, each day? According to
historical records, the average number is about 4.4 individuals. However, we would also like to know
the approximate distribution of counts. What would a histogram of the number of AMI occurrences
each day look like if we recorded the daily counts over an entire year?

A histogram of the number of occurrences of AMI on 365 days for NYC is shown in Figure 4.12.%"
The sample mean (4.38) is similar to the historical average of 4.4. The sample standard deviation
is about 2, and the histogram indicates that about 70% of the data fall between 2.4 and 6.4. The
distribution’s shape is unimodal and skewed to the right.

80 -
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c
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AMI Events (by Day)

Figure 4.12: A histogram of the number of occurrences of AMI on 365 separate
days in NYC.

The Poisson distribution is often useful for estimating the number of events in a large
population over a unit of time. For instance, consider each of the following events:

e having a heart attack,
e getting married, and

e getting struck by lightning.

The Poisson distribution helps us describe the number of such events that will occur in a day for a
fixed population if the individuals within the population are independent. The Poisson distribution
could also be used over another unit of time, such as an hour or a week.

The histogram in Figure 4.12 approximates a Poisson distribution with rate equal to 4.4. The
rate for a Poisson distribution is the average number of occurrences in a mostly-fixed population per
unit of time. In Example 4.50, the time unit is a day, the population is all New York City residents,
and the historical rate is 4.4. The parameter in the Poisson distribution is the rate — or how many
events we expect to observe — and it is typically denoted by A (the Greek letter lambda) or p. Using
the rate, we can describe the probability of observing exactly k events in a single unit of time.

39These data are simulated. In practice, we should check for an association between successive days.
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POISSON DISTRIBUTION

Suppose we are watching for events and the number of observed events follows a Poisson distri-
bution with rate A. Then

Aee—A

P(observe k events) = x

where k£ may take a value 0, 1, 2, and so on, and k! represents k-factorial, as described on
page 150. The letter e ~ 2.718 is the base of the natural logarithm. The mean and standard
deviation of this distribution are A and v/\, respectively.

We will leave a rigorous set of conditions for the Poisson distribution to a later course. However,
we offer a few simple guidelines that can be used for an initial evaluation of whether the Poisson
model would be appropriate.

A random variable may follow a Poisson distribution if we are looking for the number of events,
the population that generates such events is large, and the events occur independently of each other.

Even when events are not really independent — for instance, Saturdays and Sundays are es-
pecially popular for weddings — a Poisson model may sometimes still be reasonable if we allow it
to have a different rate for different times. In the wedding example, the rate would be modeled as
higher on weekends than on weekdays. The idea of modeling rates for a Poisson distribution against
a second variable such as the day of week forms the foundation of some more advanced methods that
fall in the realm of generalized linear models. In Chapters 8 and 9, we will discuss a foundation
of linear models.
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Exercises

4.31 Customers at a coffee shop. A coffee shop serves an average of 75 customers per hour during the
morning rush.

(a) Which distribution we have studied is most appropriate for calculating the probability of a given number
of customers arriving within one hour during this time of day?

(b) What are the mean and the standard deviation of the number of customers this coffee shop serves in
one hour during this time of day?

(c) Would it be considered unusually low if only 60 customers showed up to this coffee shop in one hour
during this time of day?

(d) Calculate the probability that this coffee shop serves 70 customers in one hour during this time of day?

4.32 Stenographer’s typos. A very skilled court stenographer makes one typographical error (typo) per
hour on average.

(a) What probability distribution is most appropriate for calculating the probability of a given number of
typos this stenographer makes in an hour?

(b) What are the mean and the standard deviation of the number of typos this stenographer makes?

(c) Would it be considered unusual if this stenographer made 4 typos in a given hour?

(d) Calculate the probability that this stenographer makes at most 2 typos in a given hour.

4.33 How many cars show up? For Monday through Thursday when there isn’t a holiday, the average
number of vehicles that visit a particular retailer between 2pm and 3pm each afternoon is 6.5, and the
number of cars that show up on any given day follows a Poisson distribution.

(a) What is the probability that exactly 5 cars will show up next Monday?

(b) What is the probability that 0, 1, or 2 cars will show up next Monday between 2pm and 3pm?

(¢) There is an average of 11.7 people who visit during those same hours from vehicles. Is it likely that the
number of people visiting by car during this hour is also Poisson? Explain.

4.34 Lost baggage. Occasionally an airline will lose a bag. Suppose a small airline has found it can
reasonably model the number of bags lost each weekday using a Poisson model with a mean of 2.2 bags.
(a) What is the probability that the airline will lose no bags next Monday?

(b) What is the probability that the airline will lose 0, 1, or 2 bags on next Monday?

(c) Suppose the airline expands over the course of the next 3 years, doubling the number of flights it makes,

and the CEO asks you if it’s reasonable for them to continue using the Poisson model with a mean
of 2.2. What is an appropriate recommendation? Explain.
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Chapter exercises

4.35 Roulette winnings. In the game of roulette, a wheel is spun and you place bets on where it will stop.
One popular bet is that it will stop on a red slot; such a bet has an 18/38 chance of winning. If it stops on
red, you double the money you bet. If not, you lose the money you bet. Suppose you play 3 times, each
time with a $1 bet. Let Y represent the total amount won or lost. Write a probability model for Y.

4.36 Speeding on the I-5, Part I. The distribution of passenger vehicle speeds traveling on the Interstate

5 Freeway (I-5) in California is nearly normal with a mean of 72.6 miles/hour and a standard deviation of

4.78 miles/hour.*

(a) What percent of passenger vehicles travel slower than 80 miles/hour?

(b) What percent of passenger vehicles travel between 60 and 80 miles/hour?

(c) How fast do the fastest 5% of passenger vehicles travel?

(d) The speed limit on this stretch of the I-5 is 70 miles/hour. Approximate what percentage of the passenger
vehicles travel above the speed limit on this stretch of the I-5.

4.37 University admissions. Suppose a university announced that it admitted 2,500 students for the
following year’s freshman class. However, the university has dorm room spots for only 1,786 freshman
students. If there is a 70% chance that an admitted student will decide to accept the offer and attend this
university, what is the approximate probability that the university will not have enough dormitory room
spots for the freshman class?

4.38 Speeding on the I-5, Part |l. Exercise 4.36 states that the distribution of speeds of cars traveling on

the Interstate 5 Freeway (I-5) in California is nearly normal with a mean of 72.6 miles/hour and a standard

deviation of 4.78 miles/hour. The speed limit on this stretch of the I-5 is 70 miles/hour.

(a) A highway patrol officer is hidden on the side of the freeway. What is the probability that 5 cars pass
and none are speeding? Assume that the speeds of the cars are independent of each other.

(b) On average, how many cars would the highway patrol officer expect to watch until the first car that is
speeding? What is the standard deviation of the number of cars he would expect to watch?

4.39 Auto insurance premiums. Suppose a newspaper article states that the distribution of auto insurance

premiums for residents of California is approximately normal with a mean of $1,650. The article also states

that 25% of California residents pay more than $1,800.

(a) What is the Z-score that corresponds to the top 25% (or the 75" percentile) of the standard normal
distribution?

(b) What is the mean insurance cost? What is the cutoff for the 75th percentile?

(c) Identify the standard deviation of insurance premiums in California.

4.40 SAT scores. SAT scores (out of 1600) are distributed normally with a mean of 1100 and a standard
deviation of 200. Suppose a school council awards a certificate of excellence to all students who score at least
1350 on the SAT, and suppose we pick one of the recognized students at random. What is the probability
this student’s score will be at least 15007 (The material covered in Section 3.2 on conditional probability
would be useful for this question.)

4.41 Married women. The American Community Survey estimates that 47.1% of women ages 15 years
and over are married.”"

(a) We randomly select three women between these ages. What is the probability that the third woman
selected is the only one who is married?

(b) What is the probability that all three randomly selected women are married?

(c) On average, how many women would you expect to sample before selecting a married woman? What is
the standard deviation?

(d) If the proportion of married women was actually 30%, how many women would you expect to sample
before selecting a married woman? What is the standard deviation?

(e) Based on your answers to parts (c) and (d), how does decreasing the probability of an event affect the
mean and standard deviation of the wait time until success?

403, Johnson and D. Murray. “Empirical Analysis of Truck and Automobile Speeds on Rural Interstates: Impact
of Posted Speed Limits”. In: Transportation Research Board 89th Annual Meeting. 2010.
417.S. Census Bureau, 2010 American Community Survey, Marital Status.
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4.42 Survey response rate. Pew Research reported that the typical response rate to their surveys is only
9%. If for a particular survey 15,000 households are contacted, what is the probability that at least 1,500
will agree to respond?*”

4.43 Overweight baggage. Suppose weights of the checked baggage of airline passengers follow a nearly
normal distribution with mean 45 pounds and standard deviation 3.2 pounds. Most airlines charge a fee for
baggage that weigh in excess of 50 pounds. Determine what percent of airline passengers incur this fee.

4.44 Heights of 10 year olds, Part |. Heights of 10 year olds, regardless of gender, closely follow a normal
distribution with mean 55 inches and standard deviation 6 inches.

(a) What is the probability that a randomly chosen 10 year old is shorter than 48 inches?
(b) What is the probability that a randomly chosen 10 year old is between 60 and 65 inches?
(c) If the tallest 10% of the class is considered “very tall”, what is the height cutoff for “very tall”?

4.45 Buying books on Ebay. Suppose you're considering buying your expensive chemistry textbook on
Ebay. Looking at past auctions suggests that the prices of this textbook follow an approximately normal
distribution with mean $89 and standard deviation $15.

(a) What is the probability that a randomly selected auction for this book closes at more than $1007

(b) Ebay allows you to set your maximum bid price so that if someone outbids you on an auction you
can automatically outbid them, up to the maximum bid price you set. If you are only bidding on one
auction, what are the advantages and disadvantages of setting a bid price too high or too low? What if
you are bidding on multiple auctions?

(¢) If you watched 10 auctions, roughly what percentile might you use for a maximum bid cutoff to be
somewhat sure that you will win one of these ten auctions? Is it possible to find a cutoff point that will
ensure that you win an auction?

(d) If you are willing to track up to ten auctions closely, about what price might you use as your maximum
bid price if you want to be somewhat sure that you will buy one of these ten books?

4.46 Heights of 10 year olds, Part |l. Heights of 10 year olds, regardless of gender, closely follow a normal

distribution with mean 55 inches and standard deviation 6 inches.

(a) The height requirement for Batman the Ride at Six Flags Magic Mountain is 54 inches. What percent
of 10 year olds cannot go on this ride?

(b) Suppose there are four 10 year olds. What is the chance that at least two of them will be able to ride
Batman the Ride?

(c) Suppose you work at the park to help them better understand their customers’ demographics, and you
are counting people as they enter the park. What is the chance that the first 10 year old you see who
can ride Batman the Ride is the 3rd 10 year old who enters the park?

(d) What is the chance that the fifth 10 year old you see who can ride Batman the Ride is the 12th 10 year
old who enters the park?

4.47 Heights of 10 year olds, Part lll. Heights of 10 year olds, regardless of gender, closely follow a normal

distribution with mean 55 inches and standard deviation 6 inches.

(a) What fraction of 10 year olds are taller than 76 inches?

(b) If there are 2,000 10 year olds entering Six Flags Magic Mountain in a single day, then compute the
expected number of 10 year olds who are at least 76 inches tall. (You may assume the heights of the
10-year olds are independent.)

(¢) Using the binomial distribution, compute the probability that 0 of the 2,000 10 year olds will be at least
76 inches tall.

(d) The number of 10 year olds who enter Six Flags Magic Mountain and are at least 76 inches tall in a
given day follows a Poisson distribution with mean equal to the value found in part (b). Use the Poisson
distribution to identify the probability no 10 year old will enter the park who is 76 inches or taller.

4.48 Multiple choice quiz. In a multiple choice quiz there are 5 questions and 4 choices for each question
(a, b, ¢, d). Robin has not studied for the quiz at all, and decides to randomly guess the answers. What is
the probability that

(a) the first question she gets right is the 3¢ question?

(b) she gets exactly 3 or exactly 4 questions right?

(c) she gets the majority of the questions right?

42Pew Research Center, Assessing the Representativeness of Public Opinion Surveys, May 15, 2012.
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Chapter

Foundations for inference

5.1 Point estimates and sampling variability
5.2 Confidence intervals for a sample proportion

5.3 Hypothesis testing for a proportion



Statistical inference is primarily concerned with understanding and
quantifying the uncertainty of parameter estimates. While the equa-
tions and details change depending on the setting, the foundations for

inference are the same throughout all of statistics.

We start with a familiar topic: the idea of using a sample proportion
to estimate a population proportion. Next, we create what’s called a
confidence interval, which is a range of plausible values where we may
find the true population value. Finally, we introduce the hypothesis
testing framework, which allows us to formally evaluate claims about
the population, such as whether a survey provides strong evidence that

a candidate has the support of a majority of the voting population.

Qo
D+

For videos, slides, and other resources, please visit

www.openintro.org/os
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5.1 Point estimates and sampling variability

Companies such as Pew Research frequently conduct polls as a way to understand the state
of public opinion or knowledge on many topics, including politics, scientific understanding, brand
recognition, and more. The ultimate goal in taking a poll is generally to use the responses to estimate
the opinion or knowledge of the broader population.

5.1.1 Point estimates and error

Suppose a poll suggested the US President’s approval rating is 45%. We would consider 45% to
be a point estimate of the approval rating we might see if we collected responses from the entire
population. This entire-population response proportion is generally referred to as the parameter
of interest. When the parameter is a proportion, it is often denoted by p, and we often refer to the
sample proportion as p (pronounced p-hat'). Unless we collect responses from every individual in
the population, p remains unknown, and we use p as our estimate of p. The difference we observe
from the poll versus the parameter is called the error in the estimate. Generally, the error consists
of two aspects: sampling error and bias.

Sampling error, sometimes called sampling uncertainty, describes how much an estimate will
tend to vary from one sample to the next. For instance, the estimate from one sample might be 1%
too low while in another it may be 3% too high. Much of statistics, including much of this book,
is focused on understanding and quantifying sampling error, and we will find it useful to consider a
sample’s size to help us quantify this error; the sample size is often represented by the letter n.

Bias describes a systematic tendency to over- or under-estimate the true population value.
For example, if we were taking a student poll asking about support for a new college stadium, we’d
probably get a biased estimate of the stadium’s level of student support by wording the question as,
Do you support your school by supporting funding for the new stadium? We try to minimize bias
through thoughtful data collection procedures, which were discussed in Chapter 1 and are the topic
of many other books.

5.1.2 Understanding the variability of a point estimate

Suppose the proportion of American adults who support the expansion of solar energy is p =
0.88, which is our parameter of interest.” If we were to take a poll of 1000 American adults on this
topic, the estimate would not be perfect, but how close might we expect the sample proportion in
the poll would be to 88%? We want to understand, how does the sample proportion p behave when
the true population proportion is 0.88.> Let’s find out! We can simulate responses we would get
from a simple random sample of 1000 American adults, which is only possible because we know the
actual support expanding solar energy to be 0.88. Here’s how we might go about constructing such
a simulation:

1. There were about 250 million American adults in 2018. On 250 million pieces of paper, write
“support” on 88% of them and “not” on the other 12%.

2. Mix up the pieces of paper and pull out 1000 pieces to represent our sample of 1000 American
adults.

3. Compute the fraction of the sample that say “support”.

Any volunteers to conduct this simulation? Probably not. Running this simulation with 250 million
pieces of paper would be time-consuming and very costly, but we can simulate it using computer

INot to be confused with phat, the slang term used for something cool, like this book.

2We haven’t actually conducted a census to measure this value perfectly. However, a very large sample has
suggested the actual level of support is about 88%.

388% written as a proportion would be 0.88. It is common to switch between proportion and percent. However,
formulas presented in this book always refer to the proportion, not the percent.
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code; we’ve written a short program in Figure 5.1 in case you are curious what the computer code
looks like. In this simulation, the sample gave a point estimate of p; = 0.894. We know the
population proportion for the simulation was p = 0.88, so we know the estimate had an error of
0.894 — 0.88 = +0.014.

# 1. Create a set of 250 million entries, where 88} of them are "support"

# and 12% are "not".

pop-size <- 250000000

possible_entries <- c(rep("support", 0.88 * pop_size), rep("not", 0.12 * pop_size))

# 2. Sample 1000 entries without replacement.
sampled_entries <- sample(possible_entries, size = 1000)

# 3. Compute p-hat: count the number that are "support", then divide by
# the sample size.
sum(sampled_entries == "support") / 1000

Figure 5.1: For those curious, this is code for a single p simulation using the statis-
tical software called R. Each line that starts with # is a code comment, which is
used to describe in regular language what the code is doing. We’ve provided soft-
ware labs in R at openintro.org/stat/labs for anyone interested in learning more.

One simulation isn’t enough to get a great sense of the distribution of estimates we might expect
in the simulation, so we should run more simulations. In a second simulation, we get po = 0.885,
which has an error of +0.005. In another, p3 = 0.878 for an error of -0.002. And in another, an
estimate of ps = 0.859 with an error of -0.021. With the help of a computer, we’ve run the simulation
10,000 times and created a histogram of the results from all 10,000 simulations in Figure 5.2. This
distribution of sample proportions is called a sampling distribution. We can characterize this
sampling distribution as follows:

Center. The center of the distribution is Z; = 0.880, which is the same as the parameter. Notice
that the simulation mimicked a simple random sample of the population, which is a straight-
forward sampling strategy that helps avoid sampling bias.

Spread. The standard deviation of the distribution is s; = 0.010. When we're talking about a
sampling distribution or the variability of a point estimate, we typically use the term standard
error rather than standard deviation, and the notation SEj is used for the standard error
associated with the sample proportion.

Shape. The distribution is symmetric and bell-shaped, and it resembles a normal distribution.
These findings are encouraging! When the population proportion is p = 0.88 and the sample size is

n = 1000, the sample proportion p tends to give a pretty good estimate of the population proportion.
We also have the interesting observation that the histogram resembles a normal distribution.

SAMPLING DISTRIBUTIONS ARE NEVER OBSERVED, BUT WE KEEP THEM IN MIND

In real-world applications, we never actually observe the sampling distribution, yet it is useful to
always think of a point estimate as coming from such a hypothetical distribution. Understanding
the sampling distribution will help us characterize and make sense of the point estimates that
we do observe.

EXAMPLE 5.1

If we used a much smaller sample size of n = 50, would you guess that the standard error for p
would be larger or smaller than when we used n = 10007

Intuitively, it seems like more data is better than less data, and generally that is correct! The typical
error when p = 0.88 and n = 50 would be larger than the error we would expect when n = 1000.

Example 5.1 highlights an important property we will see again and again: a bigger sample
tends to provide a more precise point estimate than a smaller sample.
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Frequency
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0.84 0.86 0.88 0.90 0.92
Sample Proportions
Figure 5.2: A histogram of 10,000 sample proportions, where each sample is taken

from a population where the population proportion is 0.88 and the sample size is
n = 1000.

5.1.3 Central Limit Theorem

The distribution in Figure 5.2 looks an awful lot like a normal distribution. That is no anomaly;
it is the result of a general principle called the Central Limit Theorem.

CENTRAL LIMIT THEOREM AND THE SUCCESS-FAILURE CONDITION

When observations are independent and the sample size is sufficiently large, the sample propor-
tion p will tend to follow a normal distribution with the following mean and standard error:

p(1—p)

In order for the Central Limit Theorem to hold, the sample size is typically considered sufficiently
large when np > 10 and n(1 — p) > 10, which is called the success-failure condition.

The Central Limit Theorem is incredibly important, and it provides a foundation for much
of statistics. As we begin applying the Central Limit Theorem, be mindful of the two technical
conditions: the observations must be independent, and the sample size must be sufficiently large
such that np > 10 and n(1 — p) > 10.

EXAMPLE 5.2

Earlier we estimated the mean and standard error of p using simulated data when p = 0.88 and
n = 1000. Confirm that the Central Limit Theorem applies and the sampling distribution is ap-
proximately normal.

Independence. There are n = 1000 observations for each sample proportion p, and each of those
observations are independent draws. The most common way for observations to be considered
independent is if they are from a simple random sample.

Success-failure condition. We can confirm the sample size is sufficiently large by checking the
success-failure condition and confirming the two calculated values are greater than 10:

np = 1000 x 0.88 = 880 > 10 n(1—p) =1000 x (1 —0.88) = 120 > 10

The independence and success-failure conditions are both satisfied, so the Central Limit Theorem
applies, and it’s reasonable to model p using a normal distribution.
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HOW TO VERIFY SAMPLE OBSERVATIONS ARE INDEPENDENT

Subjects in an experiment are considered independent if they undergo random assignment to
the treatment groups.

If the observations are from a simple random sample, then they are independent.

If a sample is from a seemingly random process, e.g. an occasional error on an assembly line,
checking independence is more difficult. In this case, use your best judgement.

An additional condition that is sometimes added for samples from a population is that they
are no larger than 10% of the population. When the sample exceeds 10% of the population size, the
methods we discuss tend to overestimate the sampling error slightly versus what we would get using
more advanced methods.” This is very rarely an issue, and when it is an issue, our methods tend to
be conservative, so we consider this additional check as optional.

EXAMPLE 5.3

Compute the theoretical mean and standard error of p when p = 0.88 and n = 1000, according to
the Central Limit Theorem.

The mean of the p’s is simply the population proportion: p; = 0.88.
The calculation of the standard error of p uses the following formula:

1- 88(1—0.
SEj = \/p( n 2 \/0 88(10000 = = 00w

EXAMPLE 5.4

Estimate how frequently the sample proportion p should be within 0.02 (2%) of the population
value, p = 0.88. Based on Examples 5.2 and 5.3, we know that the distribution is approximately
N(pp = 0.88,SE; = 0.010).

After so much practice in Section 4.1, this normal distribution example will hopefully feel familiar!
We would like to understand the fraction of p’s between 0.86 and 0.90:

L
0.86 0.88 0.90

With pups = 0.88 and SE; = 0.010, we can compute the Z-score for both the left and right cutoffs:

0.86 — 0.88 0.90 — 0.88
Zogg = ———— = — Zogo = ——"— =

0.010 0.010

We can use either statistical software, a graphing calculator, or a table to find the areas to the tails,
and in any case we will find that they are each 0.0228. The total tail areas are 2 x 0.0228 = 0.0456,
which leaves the shaded area of 0.9544. That is, about 95.44% of the sampling distribution in
Figure 5.2 is within +0.02 of the population proportion, p = 0.88.

4For example, we could use what’s called the finite population correction factor: if the sample is of size n
and the population size is N, then we can multiple the typical standard error formula by 4/ % to obtain a smaller,

more precise estimate of the actual standard error. When n < 0.1 X N, this correction factor is relatively small.
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GUIDED PRACTICE 5.5

In Example 5.1 we discussed how a smaller sample would tend to produce a less reliable estimate.

p(1—p) 5

Explain how this intuition is reflected in the formula for SE; = -

5.1.4 Applying the Central Limit Theorem to a real-world setting

We do not actually know the population proportion unless we conduct an expensive poll of all
individuals in the population. Our earlier value of p = 0.88 was based on a Pew Research conducted
a poll of 1000 American adults that found p = 0.887 of them favored expanding solar energy. The
researchers might have wondered: does the sample proportion from the poll approximately follow a
normal distribution? We can check the conditions from the Central Limit Theorem:

Independence. The poll is a simple random sample of American adults, which means that the
observations are independent.

Success-failure condition. To check this condition, we need the population proportion, p, to
check if both np and n(1 — p) are greater than 10. However, we do not actually know p, which
is exactly why the pollsters would take a sample! In cases like these, we often use p as our
next best way to check the success-failure condition:

np = 1000 x 0.887 = 887 n(1 —p) = 1000 x (1 —0.887) = 113

The sample proportion p acts as a reasonable substitute for p during this check, and each value
in this case is well above the minimum of 10.

This substitution approximation of using p in place of p is also useful when computing the
standard error of the sample proportion:

p(1—p) p(1—p) 0.887(1 — 0.887)
58y = \/ n \/ n 1000 = 0010

This substitution technique is sometimes referred to as the “plug-in principle”. In this case, SFEj
didn’t change enough to be detected using only 3 decimal places versus when we completed the
calculation with 0.88 earlier. The computed standard error tends to be reasonably stable even when
observing slightly different proportions in one sample or another.

5Since the sample size n is in the denominator (on the bottom) of the fraction, a bigger sample size means the
entire expression when calculated will tend to be smaller. That is, a larger sample size would correspond to a smaller
standard error.
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5.1.5 More details regarding the Central Limit Theorem

We’ve applied the Central Limit Theorem in numerous examples so far this chapter:

When observations are independent and the sample size is sufficiently large, the distri-
bution of p resembles a normal distribution with

p(1 —p)

The sample size is considered sufficiently large when np > 10 and n(1 — p) > 10.

In this section, we’ll explore the success-failure condition and seek to better understand the Central
Limit Theorem.

An interesting question to answer is, what happens when np < 10 or n(1 —p) < 10¢ As we did
in Section 5.1.2, we can simulate drawing samples of different sizes where, say, the true proportion
is p = 0.25. Here’s a sample of size 10:

no, no, yes, yes, no, no, no, no, no, no

In this sample, we observe a sample proportion of yeses of p = 1—20 = 0.2. We can simulate many such

proportions to understand the sampling distribution of p when n = 10 and p = 0.25, which we’ve
plotted in Figure 5.3 alongside a normal distribution with the same mean and variability. These
distributions have a number of important differences.

N
o
o
o

1000

Frequency

0 1 T T s T T T
00 01 02 03 04 05 06 0.7 08 -0.2 0.0 0.2 0.4 0.6

Sample Proportions
Figure 5.3: Left: simulations of p when the sample size is n = 10 and the population

proportion is p = 0.25. Right: a normal distribution with the same mean (0.25)
and standard deviation (0.137).

Unimodal? Smooth? Symmetric?
Normal: N(0.25,0.14) Yes Yes Yes
n =10, p=0.25 Yes No No

Notice that the success-failure condition was not satisfied when n = 10 and p = 0.25:
np =10x0.25 =25 n(l—p)=10x0.75=75

This single sampling distribution does not show that the success-failure condition is the perfect
guideline, but we have found that the guideline did correctly identify that a normal distribution

might not be appropriate.
We can complete several additional simulations, shown in Figures 5.4 and 5.5, and we can see
some trends:

1. When either np or n(1 — p) is small, the distribution is more discrete, i.e. not continuous.
2. When np or n(1 — p) is smaller than 10, the skew in the distribution is more noteworthy.

3. The larger both np and n(1—p), the more normal the distribution. This may be a little harder
to see for the larger sample size in these plots as the variability also becomes much smaller.

4. When np and n(1 — p) are both very large, the distribution’s discreteness is hardly evident,
and the distribution looks much more like a normal distribution.
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Figure 5.4: Sampling distributions for several scenarios of p and n.
Rows: p =0.10, p = 0.20, p = 0.50, p = 0.80, and p = 0.90.
Columns: n = 10 and n = 25.
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Figure 5.5: Sampling distributions for several scenarios of p and n.
Rows: p =0.10, p = 0.20, p = 0.50, p = 0.80, and p = 0.90.
Columns: n = 50, n = 100, and n = 250.
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So far we’ve only focused on the skew and discreteness of the distributions. We haven’t con-
sidered how the mean and standard error of the distributions change. Take a moment to look back
at the graphs, and pay attention to three things:

1. The centers of the distribution are always at the population proportion, p, that was used to
generate the simulation. Because the sampling distribution of p is always centered at the
population parameter p, it means the sample proportion p is unbiased when the data are
independent and drawn from such a population.

2. For a particular population proportion p, the variability in the sampling distribution decreases
as the sample size n becomes larger. This will likely align with your intuition: an estimate
based on a larger sample size will tend to be more accurate.

3. For a particular sample size, the variability will be largest when p = 0.5. The differences may
be a little subtle, so take a close look. This reflects the role of the proportion p in the standard
error formula: SE = 7]”(17:”). The standard error is largest when p = 0.5.
At no point will the distribution of p look perfectly normal, since p will always be take discrete
values (x/n). It is always a matter of degree, and we will use the standard success-failure condition
with minimums of 10 for np and n(1 — p) as our guideline within this book.

5.1.6 Extending the framework for other statistics

The strategy of using a sample statistic to estimate a parameter is quite common, and it’s
a strategy that we can apply to other statistics besides a proportion. For instance, if we want to
estimate the average salary for graduates from a particular college, we could survey a random sample
of recent graduates; in that example, we’d be using a sample mean T to estimate the population
mean p for all graduates. As another example, if we want to estimate the difference in product
prices for two websites, we might take a random sample of products available on both sites, check
the prices on each, and use then compute the average difference; this strategy certainly would give
us some idea of the actual difference through a point estimate.

While this chapter emphases a single proportion context, we’ll encounter many different con-
texts throughout this book where these methods will be applied. The principles and general ideas
are the same, even if the details change a little. We’ve also sprinkled some other contexts into the
exercises to help you start thinking about how the ideas generalize.
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Exercises

5.1 Identify the parameter, Part I. For each of the following situations, state whether the parameter of
interest is a mean or a proportion. It may be helpful to examine whether individual responses are numerical
or categorical.

(a) In asurvey, one hundred college students are asked how many hours per week they spend on the Internet.

(b) In a survey, one hundred college students are asked: “What percentage of the time you spend on the
Internet is part of your course work?”

(¢) In asurvey, one hundred college students are asked whether or not they cited information from Wikipedia
in their papers.

(d) In a survey, one hundred college students are asked what percentage of their total weekly spending is
on alcoholic beverages.

(e) In a sample of one hundred recent college graduates, it is found that 85 percent expect to get a job
within one year of their graduation date.

5.2 ldentify the parameter, Part Il. For each of the following situations, state whether the parameter of
interest is a mean or a proportion.

(a) A poll shows that 64% of Americans personally worry a great deal about federal spending and the budget
deficit.

(b) A survey reports that local TV news has shown a 17% increase in revenue within a two year period
while newspaper revenues decreased by 6.4% during this time period.

(¢) In a survey, high school and college students are asked whether or not they use geolocation services on
their smart phones.

(d) In a survey, smart phone users are asked whether or not they use a web-based taxi service.

(e) In a survey, smart phone users are asked how many times they used a web-based taxi service over the
last year.

5.3 Quality control. As part of a quality control process for computer chips, an engineer at a factory
randomly samples 212 chips during a week of production to test the current rate of chips with severe defects.
She finds that 27 of the chips are defective.

a) What population is under consideration in the data set?

(c
d
(e
(f

(

(b) What parameter is being estimated?
) What is the point estimate for the parameter?

(d) What is the name of the statistic can we use to measure the uncertainty of the point estimate?

) Compute the value from part (d) for this context.

) The historical rate of defects is 10%. Should the engineer be surprised by the observed rate of defects

during the current week?

(g) Suppose the true population value was found to be 10%. If we use this proportion to recompute the
value in part (e) using p = 0.1 instead of p, does the resulting value change much?

5.4 Unexpected expense. In a random sample 765 adults in the United States, 322 say they could not
cover a $400 unexpected expense without borrowing money or going into debt.

(a) What population is under consideration in the data set?

(b) What parameter is being estimated?

(¢) What is the point estimate for the parameter?
(d

(

(

What is the name of the statistic can we use to measure the uncertainty of the point estimate?

)

f
(g

)

)

) Compute the value from part (d) for this context.

) A cable news pundit thinks the value is actually 50%. Should she be surprised by the data?
)

Suppose the true population value was found to be 40%. If we use this proportion to recompute the
value in part (e) using p = 0.4 instead of p, does the resulting value change much?
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5.5 Repeated water samples. A nonprofit wants to understand the fraction of households that have
elevated levels of lead in their drinking water. They expect at least 5% of homes will have elevated levels of
lead, but not more than about 30%. They randomly sample 800 homes and work with the owners to retrieve
water samples, and they compute the fraction of these homes with elevated lead levels. They repeat this
1,000 times and build a distribution of sample proportions.

(a)
(b)

—
o
~

—
@)
~

What is this distribution called?

Would you expect the shape of this distribution to be symmetric, right skewed, or left skewed? Explain
your reasoning.

If the proportions are distributed around 8%, what is the variability of the distribution?

What is the formal name of the value you computed in (c)?

Suppose the researchers’ budget is reduced, and they are only able to collect 250 observations per sample,
but they can still collect 1,000 samples. They build a new distribution of sample proportions. How will
the variability of this new distribution compare to the variability of the distribution when each sample
contained 800 observations?

5.6 Repeated student samples. Of all freshman at a large college, 16% made the dean’s list in the current
year. As part of a class project, students randomly sample 40 students and check if those students made
the list. They repeat this 1,000 times and build a distribution of sample proportions.

(a)
(b)

—
o
~

—
@)
~

What is this distribution called?

Would you expect the shape of this distribution to be symmetric, right skewed, or left skewed? Explain
your reasoning.

Calculate the variability of this distribution.

What is the formal name of the value you computed in (c)?

Suppose the students decide to sample again, this time collecting 90 students per sample, and they again
collect 1,000 samples. They build a new distribution of sample proportions. How will the variability
of this new distribution compare to the variability of the distribution when each sample contained 40
observations?
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5.2 Confidence intervals for a sample proportion

The sample proportion p provides a single plausible value for the population proportion p.
However, the sample proportion isn’t perfect and will have some standard error associated with it.
When stating an estimate for the population proportion, it is better practice to provide a plausible
range of values instead of supplying just the point estimate.

5.2.1 Capturing the population parameter

Using only a point estimate is like fishing in a murky lake with a spear. We can throw a spear
where we saw a fish, but we will probably miss. On the other hand, if we toss a net in that area,
we have a good chance of catching the fish. A confidence interval is like fishing with a net, and
it represents a range of plausible values where we are likely to find the population parameter.

If we report a point estimate p, we probably will not hit the exact population proportion. On
the other hand, if we report a range of plausible values, representing a confidence interval, we have
a good shot at capturing the parameter.

GUIDED PRACTICE 5.6

If we want to be very certain we capture the population proportion in an interval, should we use a
wider interval or a smaller interval?®

5.2.2 Constructing a 95% confidence interval

Our sample proportion p is the most plausible value of the population proportion, so it makes
sense to build a confidence interval around this point estimate. The standard error provides a guide
for how large we should make the confidence interval.

The standard error represents the standard deviation of the point estimate, and when the Cen-
tral Limit Theorem conditions are satisfied, the point estimate closely follows a normal distribution.
In a normal distribution, 95% of the data is within 1.96 standard deviations of the mean. Using this
principle, we can construct a confidence interval that extends 1.96 standard errors from the sample
proportion to be 95% confident that the interval captures the population proportion:

point estimate + 1.96 x SE

1_
5+ 1.96 %/ PL=P)

But what does “95% confident” mean? Suppose we took many samples and built a 95% confidence
interval from each. Then about 95% of those intervals would contain the parameter, p. Figure 5.6
shows the process of creating 25 intervals from 25 samples from the simulation in Section 5.1.2, where
24 of the resulting confidence intervals contain the simulation’s population proportion of p = 0.88,
and one interval does not.

6If we want to be more certain we will capture the fish, we might use a wider net. Likewise, we use a wider
confidence interval if we want to be more certain that we capture the parameter.
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i
p=0.88
Figure 5.6: Twenty-five point estimates and confidence intervals from the sim-
ulations in Section 5.1.2. These intervals are shown relative to the population

proportion p = 0.88. Only 1 of these 25 intervals did not capture the population
proportion, and this interval has been bolded.

EXAMPLE 5.7

In Figure 5.6, one interval does not contain p = 0.88. Does this imply that the population proportion
used in the simulation could not have been p = 0.887

@ Just as some observations naturally occur more than 1.96 standard deviations from the mean, some
point estimates will be more than 1.96 standard errors from the parameter of interest. A confidence
interval only provides a plausible range of values. While we might say other values are implausible
based on the data, this does not mean they are impossible.

95% CONFIDENCE INTERVAL FOR A PARAMETER

When the distribution of a point estimate qualifies for the Central Limit Theorem and therefore
closely follows a normal distribution, we can construct a 95% confidence interval as

point estimate +1.96 x SE

EXAMPLE 5.8

In Section 5.1 we learned about a Pew Research poll where 88.7% of a random sample of 1000 Amer-
ican adults supported expanding the role of solar power. Compute and interpret a 95% confidence
interval for the population proportion.

We earlier confirmed that p follows a normal distribution and has a standard error of SE; = 0.010.
@ To compute the 95% confidence interval, plug the point estimate p = 0.887 and standard error into
the 95% confidence interval formula:

pE£1.96 x SE; — 0.887+1.96 x 0.010 — (0.8674,0.9066)

We are 95% confident that the actual proportion of American adults who support expanding solar
power is between 86.7% and 90.7%. (It’s common to round to the nearest percentage point or nearest
tenth of a percentage point when reporting a confidence interval.)
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5.2.3 Changing the confidence level

Suppose we want to consider confidence intervals where the confidence level is higher than 95%,
such as a confidence level of 99%. Think back to the analogy about trying to catch a fish: if we want
to be more sure that we will catch the fish, we should use a wider net. To create a 99% confidence
level, we must also widen our 95% interval. On the other hand, if we want an interval with lower
confidence, such as 90%, we could use a slightly narrower interval than our original 95% interval.

The 95% confidence interval structure provides guidance in how to make intervals with different
confidence levels. The general 95% confidence interval for a point estimate that follows a normal
distribution is

point estimate + 1.96 x SE

There are three components to this interval: the point estimate, “1.96”, and the standard error.
The choice of 1.96 x SE was based on capturing 95% of the data since the estimate is within 1.96
standard errors of the parameter about 95% of the time. The choice of 1.96 corresponds to a 95%
confidence level.

GUIDED PRACTICE 5.9

If X is a normally distributed random variable, what is the probability of the value X being within
2.58 standard deviations of the mean?”

Guided Practice 5.9 highlights that 99% of the time a normal random variable will be within
2.58 standard deviations of the mean. To create a 99% confidence interval, change 1.96 in the 95%
confidence interval formula to be 2.58. That is, the formula for a 99% confidence interval is

point estimate + 2.58 x SE

99%, extends —2.58 to 2.58

95%, extends —1.96 to 1.96

-3 -2 -1 0 1 2 3

Standard Deviations from the Mean

Figure 5.7: The area between -z* and z* increases as z* becomes larger. If the
confidence level is 99%, we choose z* such that 99% of a normal normal distribution
is between -2* and z*, which corresponds to 0.5% in the lower tail and 0.5% in the
upper tail: z* = 2.58.

"This is equivalent to asking how often the Z-score will be larger than -2.58 but less than 2.58. For a picture, see
Figure 5.7. To determine this probability, we can use statistical software, a calculator, or a table to look up -2.58
and 2.58 for a normal distribution: 0.0049 and 0.9951. Thus, there is a 0.9951 — 0.0049 = 0.99 probability that an
unobserved normal random variable X will be within 2.58 standard deviations of .
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This approach — using the Z-scores in the normal model to compute confidence levels — is
appropriate when a point estimate such as p is associated with a normal distribution. For some other
point estimates, a normal model is not a good fit; in these cases, we’ll use alternative distributions
that better represent the sampling distribution.

CONFIDENCE INTERVAL USING ANY CONFIDENCE LEVEL

If a point estimate closely follows a normal model with standard error SE, then a confidence
interval for the population parameter is

point estimate £ 2* x SE

where z* corresponds to the confidence level selected.

Figure 5.7 provides a picture of how to identify z* based on a confidence level. We select z* so
that the area between -z* and z* in the standard normal distribution, N(0,1), corresponds to the
confidence level.

MARGIN OF ERROR

In a confidence interval, z* x SFE is called the margin of error.

EXAMPLE 5.10

Use the data in Example 5.8 to create a 90% confidence interval for the proportion of American adults
that support expanding the use of solar power. We have already verified conditions for normality.

We first find 2* such that 90% of the distribution falls between -z* and z* in the standard normal
distribution, N(u = 0,0 = 1). We can do this using a graphing calculator, statistical software, or a
@ probability table by looking for an upper tail of 5% (the other 5% is in the lower tail): 2* = 1.65.
The 90% confidence interval can then be computed as

p £ 1.65x SE; — 0887 £ 1.65x0.0100 — (0.8705,0.9035)

That is, we are 90% confident that 87.1% to 90.4% of American adults supported the expansion of
solar power in 2018.

CONFIDENCE INTERVAL FOR A SINGLE PROPORTION

Once you’ve determined a one-proportion confidence interval would be helpful for an application,
there are four steps to constructing the interval:

Prepare. Identify p and n, and determine what confidence level you wish to use.

Check. Verify the conditions to ensure p is nearly normal. For one-proportion confidence
intervals, use p in place of p to check the success-failure condition.

Calculate. If the conditions hold, compute SE using p, find z*, and construct the interval.

Conclude. Interpret the confidence interval in the context of the problem.
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5.2.4 More case studies

In New York City on October 23rd, 2014, a doctor who had recently been treating Ebola
patients in Guinea went to the hospital with a slight fever and was subsequently diagnosed with
Ebola. Soon thereafter, an NBC 4 New York/The Wall Street Journal/Marist Poll found that 82%
of New Yorkers favored a “mandatory 21-day quarantine for anyone who has come in contact with an
Ebola patient”. This poll included responses of 1,042 New York adults between Oct 26th and 28th,
2014.

EXAMPLE 5.11

What is the point estimate in this case, and is it reasonable to use a normal distribution to model
that point estimate?

The point estimate, based on a sample of size n = 1042, is p = 0.82. To check whether p can
be reasonably modeled using a normal distribution, we check independence (the poll is based on a
simple random sample) and the success-failure condition (1042 x p ~ 854 and 1042 x (1 — p) ~ 188,
both easily greater than 10). With the conditions met, we are assured that the sampling distribution
of p can be reasonably modeled using a normal distribution.

EXAMPLE 5.12
Estimate the standard error of p = 0.82 from the Ebola survey.

We'll use the substitution approximation of p ~ p = 0.82 to compute the standard error:

2(1 — 0.82)
E, = =0.012
SEp \/ \/ 1042 0.0

EXAMPLE 5.13

Construct a 95% confidence interval for p, the proportion of New York adults who supported a
quarantine for anyone who has come into contact with an Ebola patient.

Using the standard error SE = 0.012 from Example 5.12, the point estimate 0.82, and z* = 1.96 for
a 95% confidence level, the confidence interval is

point estimate + z*x SE — 0.82 £ 1.96 x 0.012 —  (0.796,0.844)

We are 95% confident that the proportion of New York adults in October 2014 who supported a
quarantine for anyone who had come into contact with an Ebola patient was between 0.796 and
0.844.

GUIDED PRACTICE 5.14

Answer the following two questions about the confidence interval from Example 5.13:%
(a) What does 95% confident mean in this context?

(b) Do you think the confidence interval is still valid for the opinions of New Yorkers today?

8(&) If we took many such samples and computed a 95% confidence interval for each, then about 95% of those
intervals would contain the actual proportion of New York adults who supported a quarantine for anyone who has
come into contact with an Ebola patient.

(b) Not necessarily. The poll was taken at a time where there was a huge public safety concern. Now that people have
had some time to step back, they may have changed their opinions. We would need to run a new poll if we wanted
to get an estimate of the current proportion of New York adults who would support such a quarantine period.
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GUIDED PRACTICE 5.15

In the Pew Research poll about solar energy, they also inquired about other forms of energy, and
84.8% of the 1000 respondents supported expanding the use of wind turbines.’

(a) Is it reasonable to model the proportion of US adults who support expanding wind turbines
using a normal distribution?

(b) Create a 99% confidence interval for the level of American support for expanding the use of
wind turbines for power generation.

We can also construct confidence intervals for other parameters, such as a population mean. In
these cases, a confidence interval would be computed in a similar way to that of a single proportion:
a point estimate plus/minus some margin of error. We’ll dive into these details in later chapters.

5.2.5 Interpreting confidence intervals

In each of the examples, we described the confidence intervals by putting them into the context
of the data and also using somewhat formal language:

Solar. We are 90% confident that 87.1% to 90.4% of American adults support the expansion of
solar power in 2018.

Ebola. We are 95% confident that the proportion of New York adults in October 2014 who sup-
ported a quarantine for anyone who had come into contact with an Ebola patient was between
0.796 and 0.844.

Wind Turbine. We are 99% confident the proportion of Americans adults that support expanding
the use of wind turbines is between 81.9% and 87.7% in 2018.

First, notice that the statements are always about the population parameter, which considers all
American adults for the energy polls or all New York adults for the quarantine poll.

We also avoided another common mistake: incorrect language might try to describe the confi-
dence interval as capturing the population parameter with a certain probability. Making a proba-
bility interpretation is a common error: while it might be useful to think of it as a probability, the
confidence level only quantifies how plausible it is that the parameter is in the given interval.

Another important consideration of confidence intervals is that they are only about the popula-
tion parameter. A confidence interval says nothing about individual observations or point estimates.
Confidence intervals only provide a plausible range for population parameters.

Lastly, keep in mind the methods we discussed only apply to sampling error, not to bias. If
a data set is collected in a way that will tend to systematically under-estimate (or over-estimate)
the population parameter, the techniques we have discussed will not address that problem. Instead,
we rely on careful data collection procedures to help protect against bias in the examples we have
considered, which is a common practice employed by data scientists to combat bias.

GUIDED PRACTICE 5.16

Consider the 90% confidence interval for the solar energy survey: 87.1% to 90.4%. If we ran the
survey again, can we say that we’re 90% confident that the new survey’s proportion will be between
87.1% and 90.4%?'°

9(a) The survey was a random sample and counts are both > 10 (1000 x 0.848 = 848 and 1000 x 0.152 = 152), so
independence and the success-failure condition are satisfied, and p = 0.848 can be modeled using a normal distribution.
(b) Guided Practice 5.15 confirmed that p closely follows a normal distribution, so we can use the C.I. formula:

point estimate 4= 2* x SE

In this case, the point estimate is p = 0.848. For a 99% confidence interval, z* = 2.58. Computing the standard error:

SE; = \/W = 0.0114. Finally, we compute the interval as 0.848 + 2.58 x 0.0114 — (0.8186,0.8774). It is
also important to always provide an interpretation for the interval: we are 99% confident the proportion of American
adults that support expanding the use of wind turbines in 2018 is between 81.9% and 87.7%.

10 No, a confidence interval only provides a range of plausible values for a parameter, not future point estimates.
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Exercises

5.7 Chronicillness, Part I. In 2013, the Pew Research Foundation reported that “45% of U.S. adults report
that they live with one or more chronic conditions”."" However, this value was based on a sample, so it may
not be a perfect estimate for the population parameter of interest on its own. The study reported a standard
error of about 1.2%, and a normal model may reasonably be used in this setting. Create a 95% confidence
interval for the proportion of U.S. adults who live with one or more chronic conditions. Also interpret the
confidence interval in the context of the study.

5.8 Twitter users and news, Part l. A poll conducted in 2013 found that 52% of U.S. adult Twitter users get
at least some news on Twitter.'”. The standard error for this estimate was 2.4%, and a normal distribution
may be used to model the sample proportion. Construct a 99% confidence interval for the fraction of U.S.
adult Twitter users who get some news on Twitter, and interpret the confidence interval in context.

5.9 Chronic illness, Part Il. In 2013, the Pew Research Foundation reported that “45% of U.S. adults
report that they live with one or more chronic conditions”, and the standard error for this estimate is 1.2%.
Identify each of the following statements as true or false. Provide an explanation to justify each of your
answers.

(a) We can say with certainty that the confidence interval from Exercise 5.7
of U.S. adults who suffer from a chronic illness.

contains the true percentage

(b) If we repeated this study 1,000 times and constructed a 95% confidence interval for each study, then
approximately 950 of those confidence intervals would contain the true fraction of U.S. adults who suffer
from chronic illnesses.

(c) The poll provides statistically significant evidence (at the o = 0.05 level) that the percentage of U.S.
adults who suffer from chronic illnesses is below 50%.

(d) Since the standard error is 1.2%, only 1.2% of people in the study communicated uncertainty about
their answer.

5.10 Twitter users and news, Part ll. A poll conducted in 2013 found that 52% of U.S. adult Twitter users
get at least some news on Twitter, and the standard error for this estimate was 2.4%. Identify each of the
following statements as true or false. Provide an explanation to justify each of your answers.

(a) The data provide statistically significant evidence that more than half of U.S. adult Twitter users get
some news through Twitter. Use a significance level of a = 0.01.

(b) Since the standard error is 2.4%, we can conclude that 97.6% of all U.S. adult Twitter users were
included in the study.

(c) If we want to reduce the standard error of the estimate, we should collect less data.

(d) If we construct a 90% confidence interval for the percentage of U.S. adults Twitter users who get
some news through Twitter, this confidence interval will be wider than a corresponding 99% confidence
interval.

11Pew Research Center, Washington, D.C. The Diagnosis Difference, November 26, 2013.
12Pew Research Center, Washington, D.C. Twitter News Consumers: Young, Mobile and Educated, November 4,
2013.
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5.11 Waiting at an ER, Part |. A hospital administrator hoping to improve wait times decides to estimate
the average emergency room waiting time at her hospital. She collects a simple random sample of 64 patients
and determines the time (in minutes) between when they checked in to the ER until they were first seen by
a doctor. A 95% confidence interval based on this sample is (128 minutes, 147 minutes), which is based on
the normal model for the mean. Determine whether the following statements are true or false, and explain
your reasoning.

(a) We are 95% confident that the average waiting time of these 64 emergency room patients is between
128 and 147 minutes.

(b) We are 95% confident that the average waiting time of all patients at this hospital’s emergency room is
between 128 and 147 minutes.

(¢) 95% of random samples have a sample mean between 128 and 147 minutes.

(d) A 99% confidence interval would be narrower than the 95% confidence interval since we need to be more
sure of our estimate.

—
@)

) The margin of error is 9.5 and the sample mean is 137.5.

,.\
—
~

In order to decrease the margin of error of a 95% confidence interval to half of what it is now, we would
need to double the sample size.

5.12 Mental health. The General Social Survey asked the question: “For how many days during the past
30 days was your mental health, which includes stress, depression, and problems with emotions, not good?”
Based on responses from 1,151 US residents, the survey reported a 95% confidence interval of 3.40 to 4.24
days in 2010.

(a) Interpret this interval in context of the data.

(b) What does “95% confident” mean? Explain in the context of the application.

(c) Suppose the researchers think a 99% confidence level would be more appropriate for this interval. Will
this new interval be smaller or wider than the 95% confidence interval?

(d) If a new survey were to be done with 500 Americans, do you think the standard error of the estimate
be larger, smaller, or about the same.

5.13 Website registration. A website is trying to increase registration for first-time visitors, exposing 1%
of these visitors to a new site design. Of 752 randomly sampled visitors over a month who saw the new
design, 64 registered.

(a) Check any conditions required for constructing a confidence interval.
(b) Compute the standard error.

(c¢) Construct and interpret a 90% confidence interval for the fraction of first-time visitors of the site who
would register under the new design (assuming stable behaviors by new visitors over time).

5.14 Coupons driving visits. A store randomly samples 603 shoppers over the course of a year and
finds that 142 of them made their visit because of a coupon they’d received in the mail. Construct a 95%
confidence interval for the fraction of all shoppers during the year whose visit was because of a coupon they’d
received in the mail.
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5.3 Hypothesis testing for a proportion

The following question comes from a book written by Hans Rosling, Anna Rosling Rénnlund,
and Ola Rosling called Factfulness:

How many of the world’s 1 year old children today have been vaccinated against some
disease:

a. 20%
b. 50%
c. 80%

Write down what your answer (or guess), and when you're ready, find the answer in the footnote.'”

In this section, we’ll be exploring how people with a 4-year college degree perform on this and
other world health questions as we learn about hypothesis tests, which are a framework used to
rigorously evaluate competing ideas and claims.

5.3.1 Hypothesis testing framework

We're interested in understanding whether people know much about world health and devel-
opment. If we take a multiple choice world health question, then we might like to understand if

Hg: People never learn these particular topics and their responses are simply equivalent to random
guesses.

Ha: People have knowledge that helps them do better than random guessing, or perhaps, they have
false knowledge that leads them to actually do worse than random guessing.

These competing ideas are called hypotheses. We call Hy the null hypothesis and H 4 the alternative
hypothesis. When there is a subscript 0 like in Hy, data scientists pronounce it as “nought” (e.g. Hy
is pronounced “H-nought”).

NULL AND ALTERNATIVE HYPOTHESES

The null hypothesis (H) often represents a skeptical perspective or a claim to be tested.
The alternative hypothesis (H4) represents an alternative claim under consideration and is
often represented by a range of possible parameter values.

Our job as data scientists is to play the role of a skeptic: before we buy into the alternative
hypothesis, we need to see strong supporting evidence.

The null hypothesis often represents a skeptical position or a perspective of “no difference”. In
our first example, we’ll consider whether the typical person does any different than random guessing
on Roslings’ question about infant vaccinations.

The alternative hypothesis generally represents a new or stronger perspective. In the case of
the question about infant vaccinations, it would certainly be interesting to learn whether people do
better than random guessing, since that would mean that the typical person knows something about
world health statistics. It would also be very interesting if we learned that people do worse than
random guessing, which would suggest people believe incorrect information about world health.

The hypothesis testing framework is a very general tool, and we often use it without a second
thought. If a person makes a somewhat unbelievable claim, we are initially skeptical. However,
if there is sufficient evidence that supports the claim, we set aside our skepticism and reject the null
hypothesis in favor of the alternative. The hallmarks of hypothesis testing are also found in the
US court system.

13The correct answer is (c): 80% of the world’s 1 year olds have been vaccinated against some disease.
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GUIDED PRACTICE 5.17

A US court considers two possible claims about a defendant: she is either innocent or guilty. If we
set these claims up in a hypothesis framework, which would be the null hypothesis and which the
alternative?'*

Jurors examine the evidence to see whether it convincingly shows a defendant is guilty. Even
if the jurors leave unconvinced of guilt beyond a reasonable doubt, this does not mean they believe
the defendant is innocent. This is also the case with hypothesis testing: even if we fail to reject the
null hypothesis, we typically do not accept the null hypothesis as true. Failing to find strong evidence
for the alternative hypothesis is not equivalent to accepting the null hypothesis.

When considering Roslings’ question about infant vaccination, the null hypothesis represents
the notion that the people we will be considering — college-educated adults — are as accurate as
random guessing. That is, the proportion p of respondents who pick the correct answer, that 80%
of 1 year olds have been vaccinated against some disease, is about 33.3% (or 1-in-3 if wanting to
be perfectly precise). The alternative hypothesis is that this proportion is something other than
33.3%. While it’s helpful to write these hypotheses in words, it can be useful to write them using
mathematical notation:

Hy: p=0.333
Ha: p#0.333

In this hypothesis setup, we want to make a conclusion about the population parameter p. The
value we are comparing the parameter to is called the null value, which in this case is 0.333. It’s
common to label the null value with the same symbol as the parameter but with a subscript ‘0’.
That is, in this case, the null value is py = 0.333 (pronounced “p-nought equals 0.333”).

EXAMPLE 5.18

It may seem impossible that the proportion of people who get the correct answer is exactly 33.3%.
If we don’t believe the null hypothesis, should we simply reject it?

No. While we may not buy into the notion that the proportion is exactly 33.3%, the hypothesis
testing framework requires that there be strong evidence before we reject the null hypothesis and
conclude something more interesting.

After all, even if we don’t believe the proportion is exactly 33.3%, that doesn’t really tell us anything
useful! We would still be stuck with the original question: do people do better or worse than random
guessing on Roslings’ question? Without data that strongly points in one direction or the other, it
is both uninteresting and pointless to reject Hy.

GUIDED PRACTICE 5.19

Another example of a real-world hypothesis testing situation is evaluating whether a new drug is
better or worse than an existing drug at treating a particular disease. What should we use for the
null and alternative hypotheses in this case?'®

14The jury considers whether the evidence is so convincing (strong) that there is no reasonable doubt regarding the
person’s guilt; in such a case, the jury rejects innocence (the null hypothesis) and concludes the defendant is guilty
(alternative hypothesis).

15The null hypothesis (Hp) in this case is the declaration of no difference: the drugs are equally effective. The
alternative hypothesis (H4) is that the new drug performs differently than the original, i.e. it could perform better
or worse.
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5.3.2 Testing hypotheses using confidence intervals

We will use the rosling_responses data set to evaluate the hypothesis test evaluating whether
college-educated adults who get the question about infant vaccination correct is different from 33.3%.
This data set summarizes the answers of 50 college-educated adults. Of these 50 adults, 24% of
respondents got the question correct that 80% of 1 year olds have been vaccinated against some
disease.

Up until now, our discussion has been philosophical. However, now that we have data, we
might ask ourselves: does the data provide strong evidence that the proportion of college-educated
adults is different than 33.3%?

We learned in Section 5.1 that there is fluctuation from one sample to another, and it is
unlikely that our sample proportion, p, will exactly equal p, but we want to make a conclusion
about p. We have a nagging concern: is this deviation of 24% from 33.3% simply due to chance,
or does the data provide strong evidence that the population proportion is different from 33.3%?

In Section 5.2, we learned how to quantify the uncertainty in our estimate using confidence
intervals. The same method for measuring variability can be useful for the hypothesis test.

EXAMPLE 5.20

Check whether it is reasonable to construct a confidence interval for p using the sample data, and if
so, construct a 95% confidence interval.

The conditions are met for p to be approximately normal: the data come from a simple random
sample (satisfies independence), and np = 12 and n(1 — p) = 38 are both at least 10 (success-failure
condition).

To construct the confidence interval, we will need to identify the point estimate (p = 0.24), the critical
value for the 95% confidence level (z* = 1.96), and the standard error of p (SE; = \/p(1 —p)/n =
0.060). With those pieces, the confidence interval for p can be constructed:

]3 + 2% X SE;[;
0.24 4 1.96 x 0.060
(0.122,0.358)

We are 95% confident that the proportion of all college-educated adults to correctly answer this
particular question about infant vaccination is between 12.2% and 35.8%.

Because the null value in the hypothesis test is pg = 0.333, which falls within the range of
plausible values from the confidence interval, we cannot say the null value is implausible.'® That
is, the data do not provide sufficient evidence to reject the notion that the performance of college-
educated adults was different than random guessing, and we do not reject the null hypothesis, Hy.

EXAMPLE 5.21

Explain why we cannot conclude that college-educated adults simply guessed on the infant vaccina-
tion question.

While we failed to reject Hp, that does not necessarily mean the null hypothesis is true. Perhaps
there was an actual difference, but we were not able to detect it with the relatively small sample
of 50.

DOUBLE NEGATIVES CAN SOMETIMES BE USED IN STATISTICS

In many statistical explanations, we use double negatives. For instance, we might say that the
null hypothesis is not implausible or we failed to reject the null hypothesis. Double negatives
are used to communicate that while we are not rejecting a position, we are also not saying it is
correct.

16 Arguably this method is slightly imprecise. As we’ll see in a few pages, the standard error is often computed
slightly differently in the context of a hypothesis test for a proportion.
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GUIDED PRACTICE 5.22

Let’s move onto a second question posed by the Roslings:

There are 2 billion children in the world today aged 0-15 years old, how many children
will there be in year 2100 according to the United Nations?

a. 4 billion.
b. 3 billion.
c. 2 billion.

Set up appropriate hypotheses to evaluate whether college-educated adults are better than random
guessing on this question. Also, see if you can guess the correct answer before checking the answer
in the footnote!'”

GUIDED PRACTICE 5.23

This time we took a larger sample of 228 college-educated adults, 34 (14.9%) selected the correct
answer to the question in Guided Practice 5.22: 2 billion. Can we model the sample proportion
using a normal distribution and construct a confidence interval?'®

EXAMPLE 5.24

Compute a 95% confidence interval for the fraction of college-educated adults who answered the

children-in-2100 question correctly, and evaluate the hypotheses in Guided Practice 5.22.

To compute the standard error, we’ll again use p in place of p for the calculation:

51— p 149(1—0.14
SE, = \/p( . p) _ \/0 9(2280 9 _0.024

In Guided Practice 5.23, we found that p can be modeled using a normal distribution, which ensures
a 95% confidence interval may be accurately constructed as

p+ z2*xSE — 0149 + 1.96 x 0.024 — (0.103,0.195)

Because the null value, py = 0.333, is not in the confidence interval, a population proportion of 0.333
is implausible and we reject the null hypothesis. That is, the data provide statistically significant
evidence that the actual proportion of college adults who get the children-in-2100 question correct
is different from random guessing. Because the entire 95% confidence interval is below 0.333, we can
conclude college-educated adults do worse than random guessing on this question.

One subtle consideration is that we used a 95% confidence interval. What if we had used a 99%
confidence level? Or even a 99.9% confidence level? It’s possible to come to a different conclusion
if using a different confidence level. Therefore, when we make a conclusion based on confidence
interval, we should also be sure it is clear what confidence level we used.

The worse-than-random performance on this last question is not a fluke: there are many such
world health questions where people do worse than random guessing. In general, the answers suggest
that people tend to be more pessimistic about progress than reality suggests. This topic is discussed
in much greater detail in the Roslings’ book, Fuctfulness.

17The appropriate hypotheses are:

Hp: the proportion who get the answer correct is the same as random guessing: 1-in-3, or p = 0.333.

H 4: the proportion who get the answer correct is different than random guessing, p # 0.333.

The correct answer to the question is 2 billion. While the world population is projected to increase, the average
age is also expected to rise. That is, the majority of the population growth will happen in older age groups, meaning
people are projected to live longer in the future across much of the world.

18We check both conditions, which are satisfied, so it is reasonable to use a normal distribution for p:
Independence. Since the data are from a simple random sample, the observations are independent.
Success-failure. We’ll use p in place of p to check: np = 34 and n(1 — p) = 194. Both are greater than 10, so the
success-failure condition is satisfied.


http://www.openintro.org/redirect.php?go=amazon_factfulness&referrer=os4_pdf

5.3. HYPOTHESIS TESTING FOR A PROPORTION

5.3.3 Decision errors

Hypothesis tests are not flawless: we can make an incorrect decision in a statistical hypothesis
test based on the data. For example, in the court system innocent people are sometimes wrongly
convicted and the guilty sometimes walk free. One key distinction with statistical hypothesis tests
is that we have the tools necessary to probabilistically quantify how often we make errors in our
conclusions.

Recall that there are two competing hypotheses: the null and the alternative. In a hypothesis
test, we make a statement about which one might be true, but we might choose incorrectly. There
are four possible scenarios, which are summarized in Figure 5.8.

Test conclusion

do not reject Hy reject Hy in favor of H4

Hy true okay Type 1 Error

Truth
v Hy true  Type 2 Error okay

Figure 5.8: Four different scenarios for hypothesis tests.

A Type 1 Error is rejecting the null hypothesis when Hy is actually true. A Type 2 Error
is failing to reject the null hypothesis when the alternative is actually true.

GUIDED PRACTICE 5.25

In a US court, the defendant is either innocent (Hy) or guilty (H4). What does a Type 1 Error
represent in this context? What does a Type 2 Error represent? Figure 5.8 may be useful.'”

EXAMPLE 5.26

How could we reduce the Type 1 Error rate in US courts? What influence would this have on the
Type 2 Error rate?

To lower the Type 1 Error rate, we might raise our standard for conviction from “beyond a reasonable
doubt” to “beyond a conceivable doubt” so fewer people would be wrongly convicted. However, this
would also make it more difficult to convict the people who are actually guilty, so we would make
more Type 2 Errors.

GUIDED PRACTICE 5.27

How could we reduce the Type 2 Error rate in US courts? What influence would this have on the
Type 1 Error rate??!

Exercises 5.25-5.27 provide an important lesson: if we reduce how often we make one type of
error, we generally make more of the other type.

Hypothesis testing is built around rejecting or failing to reject the null hypothesis. That is, we
do not reject Hy unless we have strong evidence. But what precisely does strong evidence mean? As
a general rule of thumb, for those cases where the null hypothesis is actually true, we do not want
to incorrectly reject Hg more than 5% of the time. This corresponds to a significance level of
0.05. That is, if the null hypothesis is true, the significance level indicates how often the data lead
us to incorrectly reject Hy. We often write the significance level using « (the Greek letter alpha):
a = 0.05. We discuss the appropriateness of different significance levels in Section 5.3.5.

191f the court makes a Type 1 Error, this means the defendant is innocent (Hp true) but wrongly convicted. Note
that a Type 1 Error is only possible if we’ve rejected the null hypothesis.

A Type 2 Error means the court failed to reject Ho (i.e. failed to convict the person) when she was in fact guilty
(H4 true). Note that a Type 2 Error is only possible if we have failed to reject the null hypothesis.

20To lower the Type 2 Error rate, we want to convict more guilty people. We could lower the standards for
conviction from “beyond a reasonable doubt” to “beyond a little doubt”. Lowering the bar for guilt will also result
in more wrongful convictions, raising the Type 1 Error rate.
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If we use a 95% confidence interval to evaluate a hypothesis test and the null hypothesis happens
to be true, we will make an error whenever the point estimate is at least 1.96 standard errors away
from the population parameter. This happens about 5% of the time (2.5% in each tail). Similarly,
using a 99% confidence interval to evaluate a hypothesis is equivalent to a significance level of
a = 0.01.

A confidence interval is very helpful in determining whether or not to reject the null hypothesis.
However, the confidence interval approach isn’t always sustainable. In several sections, we will
encounter situations where a confidence interval cannot be constructed. For example, if we wanted
to evaluate the hypothesis that several proportions are equal, it isn’t clear how to construct and
compare many confidence intervals altogether.

Next we will introduce a statistic called the p-value to help us expand our statistical toolkit,
which will enable us to both better understand the strength of evidence and work in more complex
data scenarios in later sections.

5.3.4 Formal testing using p-values

The p-value is a way of quantifying the strength of the evidence against the null hypothesis
and in favor of the alternative hypothesis. Statistical hypothesis testing typically uses the p-value
method rather than making a decision based on confidence intervals.

P-VALUE

The p-value is the probability of observing data at least as favorable to the alternative hy-
pothesis as our current data set, if the null hypothesis were true. We typically use a summary
statistic of the data, in this section the sample proportion, to help compute the p-value and
evaluate the hypotheses.

EXAMPLE 5.28

Pew Research asked a random sample of 1000 American adults whether they supported the increased
usage of coal to produce energy. Set up hypotheses to evaluate whether a majority of American
adults support or oppose the increased usage of coal.

The uninteresting result is that there is no majority either way: half of Americans support and the
other half oppose expanding the use of coal to produce energy. The alternative hypothesis would be
that there is a majority support or oppose (though we do not known which one!) expanding the use
of coal. If p represents the proportion supporting, then we can write the hypotheses as

Hy: p=10.5
Ha: p#0.5
In this case, the null value is py = 0.5.

When evaluating hypotheses for proportions using the p-value method, we will slightly modify
how we check the success-failure condition and compute the standard error for the single proportion
case. These changes aren’t dramatic, but pay close attention to how we use the null value, pg.
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EXAMPLE 5.29
Pew Research’s sample show that 37% of American adults support increased usage of coal. We now

wonder, does 37% represent a real difference from the null hypothesis of 50%? What would the
sampling distribution of p look like if the null hypothesis were true?

If the null hypothesis were true, the population proportion would be the null value, 0.5. We previ-
ously learned that the sampling distribution of p will be normal when two conditions are met:

Independence. The poll was based on a simple random sample, so independence is satisfied.

Success-failure. Based on the poll’s sample size of n = 1000, the success-failure condition is met,
since

np 2 1000 x 0.5 = 500 n(l—p) 2 1000 x (1 —0.5) = 500

are both at least 10. Note that the success-failure condition was checked using the null value,
po = 0.5; this is the first procedural difference from confidence intervals.

If the null hypothesis were true, the sampling distribution indicates that a sample proportion based
on n = 1000 observations would be normally distributed. Next, we can compute the standard error,
where we will again use the null value py = 0.5 in the calculation:

p(1—-p) H 0.5 x (1 —-0.5)
SE, =4/ 2/ = — > =10.016
P n 1000
This marks the other procedural difference from confidence intervals: since the sampling distribu-
tion is determined under the null proportion, the null value py was used for the proportion in the
calculation rather than p.

Ultimately, if the null hypothesis were true, then the sample proportion should follow a normal
distribution with mean 0.5 and a standard error of 0.016. This distribution is shown in Figure 5.9.

Observed p = 0.37

/

0.37 0.50

Figure 5.9: If the null hypothesis were true, this normal distribution describes the
distribution of p.

CHECKING SUCCESS-FAILURE AND COMPUTING SE; FOR A HYPOTHESIS TEST

When using the p-value method to evaluate a hypothesis test, we check the conditions for p and
construct the standard error using the null value, pg, instead of using the sample proportion.

In a hypothesis test with a p-value, we are supposing the null hypothesis is true, which is a
different mindset than when we compute a confidence interval. This is why we use pg instead
of p when we check conditions and compute the standard error in this context.

When we identify the sampling distribution under the null hypothesis, it has a special name:
the null distribution. The p-value represents the probability of the observed p, or a p that is more
extreme, if the null hypothesis were true. To find the p-value, we generally find the null distribution,
and then we find a tail area in that distribution corresponding to our point estimate.
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EXAMPLE 5.30

If the null hypothesis were true, determine the chance of finding p at least as far into the tails as
0.37 under the null distribution, which is a normal distribution with mean p = 0.5 and SE = 0.016.

This is a normal probability problem where = 0.37. First, we draw a simple graph to represent
the situation, similar to what is shown in Figure 5.9. Since p is so far out in the tail, we know the
tail area is going to be very small. To find it, we start by computing the Z-score using the mean of
0.5 and the standard error of 0.016:

0.37-0.5
Z = ool - —8.125

We can use software to find the tail area: 2.2 x 1071¢ (0.00000000000000022). If using the normal
probability table in Appendix C.1, we’d find that Z = —8.125 is off the table, so we would use the
smallest area listed: 0.0002.

The potential p’s in the upper tail beyond 0.63, which are shown in Figure 5.10, also represent
observations at least as extreme as the observed value of 0.37. To account for these values that are
also more extreme under the hypothesis setup, we double the lower tail to get an estimate of the
p-value: 4.4 x 10716 (or if using the table method, 0.0004).

The p-value represents the probability of observing such an extreme sample proportion by chance,
if the null hypothesis were true.

Tail Area for 6 Equally unlikely if Hy is true
e _\
— T T  E—
0.37 0.50 0.63

Figure 5.10: If Hy were true, then the values above 0.63 are just as unlikely as
values below 0.37.

EXAMPLE 5.31

How should we evaluate the hypotheses using the p-value of 4.4x10716? Use the standard significance
level of o = 0.05.

If the null hypothesis were true, there’s only an incredibly small chance of observing such an extreme
deviation of p from 0.5. This means one of the following must be true:

1. The null hypothesis is true, and we just happened to get observe something so extreme that
only happens about once in every 23 quadrillion times (1 quadrillion = 1 million x 1 billion).

2. The alternative hypothesis is true, which would be consistent with observing a sample propor-
tion far from 0.5.

The first scenario is laughably improbable, while the second scenario seems much more plausible.

Formally, when we evaluate a hypothesis test, we compare the p-value to the significance level, which
in this case is a = 0.05. Since the p-value is less than «, we reject the null hypothesis. That is,
the data provide strong evidence against Hy. The data indicate the direction of the difference: a
majority of Americans do not support expanding the use of coal-powered energy.
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COMPARE THE P-VALUE TO o TO EVALUATE H,

When the p-value is less than the significance level, «, reject Hy. We would report a conclusion
that the data provide strong evidence supporting the alternative hypothesis.

When the p-value is greater than «, do not reject Hy, and report that we do not have sufficient
evidence to reject the null hypothesis.

In either case, it is important to describe the conclusion in the context of the data.

GUIDED PRACTICE 5.32

Do a majority of Americans support or oppose nuclear arms reduction? Set up hypotheses to
evaluate this question.?!

EXAMPLE 5.33

A simple random sample of 1028 US adults in March 2013 show that 56% support nuclear arms
reduction. Does this provide convincing evidence that a majority of Americans supported nuclear
arms reduction at the 5% significance level?

First, check conditions:

Independence. The poll was of a simple random sample of US adults, meaning the observations
are independent.

Success-failure. In a one-proportion hypothesis test, this condition is checked using the null pro-
portion, which is pg = 0.5 in this context: npy = n(1 — pg) = 1028 x 0.5 = 514 > 10.

With these conditions verified, we can model p using a normal model.

Next the standard error can be computed. The null value pgy is used again here, because this is a
hypothesis test for a single proportion.

po(1 = po) \/0.5(1 —0.5)
EA — = = . 1
SEp \/ n 1028 0-0156

Based on the normal model, the test statistic can be computed as the Z-score of the point estimate:

point estimate — null value  0.56 — 0.50
Z = = =3.
SE 0.0156 375

It’s generally helpful to draw null distribution and the tail areas of interest for computing the p-value:

lower tall upper tail
¥ \
T I
0.5 0.56

The upper tail area is 0.0002 or less, and we double this tail area to get the p-value: 0.0004. Because
the p-value is smaller than 0.05, we reject Hy. The poll provides convincing evidence that a majority
of Americans supported nuclear arms reduction efforts in March 2013.

21'We would like to understand if a majority supports or opposes, or ultimately, if there is no difference. If p is the
proportion of Americans who support nuclear arms reduction, then Hg: p = 0.50 and H 4: p # 0.50.
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HYPOTHESIS TESTING FOR A SINGLE PROPORTION
Once you've determined a one-proportion hypothesis test is the correct procedure, there are

four steps to completing the test:

Prepare. Identify the parameter of interest, list hypotheses, identify the significance level, and
identify p and n.

Check. Verify conditions to ensure p is nearly normal under Hy. For one-proportion hypothesis
tests, use the null value to check the success-failure condition.

Calculate. If the conditions hold, compute the standard error, again using pg, compute the
Z-score, and identify the p-value.

Conclude. Evaluate the hypothesis test by comparing the p-value to «, and provide a conclu-
sion in the context of the problem.

5.3.5 Choosing a significance level

Choosing a significance level for a test is important in many contexts, and the traditional level
is @« = 0.05. However, it can be helpful to adjust the significance level based on the application.
We may select a level that is smaller or larger than 0.05 depending on the consequences of any
conclusions reached from the test.

If making a Type 1 Error is dangerous or especially costly, we should choose a small significance
level (e.g. 0.01). Under this scenario we want to be very cautious about rejecting the null hypothesis,
so we demand very strong evidence favoring H4 before we would reject Hy.

If a Type 2 Error is relatively more dangerous or much more costly than a Type 1 Error, then
we might choose a higher significance level (e.g. 0.10). Here we want to be cautious about failing to
reject Hyp when the alternative hypothesis is actually true.

Additionally, if the cost of collecting data is small relative to the cost of a Type 2 Error, then
it may also be a good strategy to collect more data. Under this strategy, the Type 2 Error can be
reduced while not affecting the Type 1 Error rate. Of course, collecting extra data is often costly,
so there is typically a cost-benefit analysis to be considered.

EXAMPLE 5.34

A car manufacturer is considering switching to a new, higher quality piece of equipment that con-
structs vehicle door hinges. They figure that they will save money in the long run if this new machine
produces hinges that have flaws less than 0.2% of the time. However, if the hinges are flawed more
than 0.2% of the time, they wouldn’t get a good enough return-on-investment from the new piece
of equipment, and they would lose money. Is there good reason to modify the significance level in
such a hypothesis test?

The null hypothesis would be that the rate of flawed hinges is 0.2%, while the alternative is that it
the rate is different than 0.2%. This decision is just one of many that have a marginal impact on
the car and company. A significance level of 0.05 seems reasonable since neither a Type 1 or Type 2
Error should be dangerous or (relatively) much more expensive.
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EXAMPLE 5.35

The same car manufacturer is considering a slightly more expensive supplier for parts related to
safety, not door hinges. If the durability of these safety components is shown to be better than the
current supplier, they will switch manufacturers. Is there good reason to modify the significance
level in such an evaluation?

The null hypothesis would be that the suppliers’ parts are equally reliable. Because safety is involved,
the car company should be eager to switch to the slightly more expensive manufacturer (reject Hy),
even if the evidence of increased safety is only moderately strong. A slightly larger significance level,
such as a = 0.10, might be appropriate.

GUIDED PRACTICE 5.36

A part inside of a machine is very expensive to replace. However, the machine usually functions
properly even if this part is broken, so the part is replaced only if we are extremely certain it is
broken based on a series of measurements. Identify appropriate hypotheses for this test (in plain
language) and suggest an appropriate significance level.”

WHY IS 0.05 THE DEFAULT?

The o = 0.05 threshold is most common. But why? Maybe the standard level should be
smaller, or perhaps larger. If you're a little puzzled, you're reading with an extra critical eye —
good job! We’ve made a 5-minute task to help clarify why 0.05:

www.openintro.org/why05

5.3.6 Statistical significance versus practical significance

When the sample size becomes larger, point estimates become more precise and any real differ-
ences in the mean and null value become easier to detect and recognize. Even a very small difference
would likely be detected if we took a large enough sample. Sometimes researchers will take such large
samples that even the slightest difference is detected, even differences where there is no practical
value. In such cases, we still say the difference is statistically significant, but it is not practi-
cally significant. For example, an online experiment might identify that placing additional ads on
a movie review website statistically significantly increases viewership of a TV show by 0.001%, but
this increase might not have any practical value.

One role of a data scientist in conducting a study often includes planning the size of the study.
The data scientist might first consult experts or scientific literature to learn what would be the
smallest meaningful difference from the null value. She also would obtain other information, such
as a very rough estimate of the true proportion p, so that she could roughly estimate the standard
error. From here, she can suggest a sample size that is sufficiently large that, if there is a real
difference that is meaningful, we could detect it. While larger sample sizes may still be used, these
calculations are especially helpful when considering costs or potential risks, such as possible health
impacts to volunteers in a medical study.

22Here the null hypothesis is that the part is not broken, and the alternative is that it is broken. If we don’t have
sufficient evidence to reject Hp, we would not replace the part. It sounds like failing to fix the part if it is broken
(Ho false, H 4 true) is not very problematic, and replacing the part is expensive. Thus, we should require very strong
evidence against Hg before we replace the part. Choose a small significance level, such as a« = 0.01.


http://www.openintro.org/redirect.php?go=textbook-why05&referrer=os4_pdf
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5.3.7 One-sided hypothesis tests (special topic)

So far we’ve only considered what are called two-sided hypothesis tests, where we care about
detecting whether p is either above or below some null value py. There is a second type of hypothesis
test called a one-sided hypothesis test. For a one-sided hypothesis test, the hypotheses take one
of the following forms:

1. There’s only value in detecting if the population parameter is less than some value pg. In this
case, the alternative hypothesis is written as p < pg for some null value pyg.

2. There’s only value in detecting if the population parameter is more than some value pg: In this
case, the alternative hypothesis is written as p > pog.

While we adjust the form of the alternative hypothesis, we continue to write the null hypothesis
using an equals-sign in the one-sided hypothesis test case.

In the entire hypothesis testing procedure, there is only one difference in evaluating a one-
sided hypothesis test vs a two-sided hypothesis test: how to compute the p-value. In a one-sided
hypothesis test, we compute the p-value as the tail area in the direction of the alternative hypothesis
only, meaning it is represented by a single tail area. Herein lies the reason why one-sided tests are
sometimes interesting: if we don’t have to double the tail area to get the p-value, then the p-value
is smaller and the level of evidence required to identify an interesting finding in the direction of the
alternative hypothesis goes down. However, one-sided tests aren’t all sunshine and rainbows: the
heavy price paid is that any interesting findings in the opposite direction must be disregarded.

EXAMPLE 5.37

In Section 1.1, we encountered an example where doctors were interested in determining whether
stents would help people who had a high risk of stroke. The researchers believed the stents would
help. Unfortunately, the data showed the opposite: patients who received stents actually did worse.
Why was using a two-sided test so important in this context?

Before the study, researchers had reason to believe that stents would help patients since existing
research suggested stents helped in patients with heart attacks. It would surely have been tempting
to use a one-sided test in this situation, and had they done this, they would have limited their ability
to identify potential harm to patients.

Example 5.37 highlights that using a one-sided hypothesis creates a risk of overlooking data
supporting the opposite conclusion. We could have made a similar error when reviewing the Roslings’
question data this section; if we had a pre-conceived notion that college-educated people wouldn’t do
worse than random guessing and so used a one-sided test, we would have missed the really interesting
finding that many people have incorrect knowledge about global public health.

When might a one-sided test be appropriate to use? Very rarely. Should you ever find yourself
considering using a one-sided test, carefully answer the following question:

What would I, or others, conclude if the data happens to go clearly in the opposite direc-
tion than my alternative hypothesis?

If you or others would find any value in making a conclusion about the data that goes in the
opposite direction of a one-sided test, then a two-sided hypothesis test should actually be used.
These considerations can be subtle, so exercise caution. We will only apply two-sided tests in the
rest of this book.
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EXAMPLE 5.38
Why can’t we simply run a one-sided test that goes in the direction of the data?

We’ve been building a careful framework that controls for the Type 1 Error, which is the significance
level « in a hypothesis test. We’ll use the a = 0.05 below to keep things simple.

Imagine we could pick the one-sided test after we saw the data. What will go wrong?

o If p is smaller than the null value, then a one-sided test where p < py would mean that any
observation in the lower 5% tail of the null distribution would lead to us rejecting Hp.

o If p is larger than the null value, then a one-sided test where p > pg would mean that any
observation in the upper 5% tail of the null distribution would lead to us rejecting Hyp.

Then if Hy were true, there’s a 10% chance of being in one of the two tails, so our testing error is
actually o = 0.10, not 0.05. That is, not being careful about when to use one-sided tests effectively
undermines the methods we’re working so hard to develop and utilize.
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5.15 Identify hypotheses, Part |. Write the null and alternative hypotheses in words and then symbols for
each of the following situations.

(a) A tutoring company would like to understand if most students tend to improve their grades (or not)
after they use their services. They sample 200 of the students who used their service in the past year
and ask them if their grades have improved or declined from the previous year.

(b) Employers at a firm are worried about the effect of March Madness, a basketball championship held each
spring in the US, on employee productivity. They estimate that on a regular business day employees
spend on average 15 minutes of company time checking personal email, making personal phone calls,
etc. They also collect data on how much company time employees spend on such non-business activities
during March Madness. They want to determine if these data provide convincing evidence that employee
productivity changed during March Madness.

5.16 Identify hypotheses, Part Il. Write the null and alternative hypotheses in words and using symbols
for each of the following situations.

(a) Since 2008, chain restaurants in California have been required to display calorie counts of each menu
item. Prior to menus displaying calorie counts, the average calorie intake of diners at a restaurant was
1100 calories. After calorie counts started to be displayed on menus, a nutritionist collected data on the
number of calories consumed at this restaurant from a random sample of diners. Do these data provide
convincing evidence of a difference in the average calorie intake of a diners at this restaurant?

(b) The state of Wisconsin would like to understand the fraction of its adult residents that consumed alcohol
in the last year, specifically if the rate is different from the national rate of 70%. To help them answer this
question, they conduct a random sample of 852 residents and ask them about their alcohol consumption.

5.17 Online communication. A study suggests that 60% of college student spend 10 or more hours per
week communicating with others online. You believe that this is incorrect and decide to collect your own
sample for a hypothesis test. You randomly sample 160 students from your dorm and find that 70% spent
10 or more hours a week communicating with others online. A friend of yours, who offers to help you with
the hypothesis test, comes up with the following set of hypotheses. Indicate any errors you see.

Ho:ﬁ<0.6
HA:ﬁ>O.7

5.18 Married at 25. A study suggests that the 25% of 25 year olds have gotten married. You believe that
this is incorrect and decide to collect your own sample for a hypothesis test. From a random sample of 25
year olds in census data with size 776, you find that 24% of them are married. A friend of yours offers
to help you with setting up the hypothesis test and comes up with the following hypotheses. Indicate any
€rTors you see.

Ho:p=0.24
Ha:p#0.24

5.19 Cyberbullying rates. Teens were surveyed about cyberbullying, and 54% to 64% reported experienc-
ing cyberbullying (95% confidence interval).”® Answer the following questions based on this interval.

(a) A newspaper claims that a majority of teens have experienced cyberbullying. Is this claim supported
by the confidence interval? Explain your reasoning.

(b) A researcher conjectured that 70% of teens have experienced cyberbullying. Is this claim supported by
the confidence interval? Explain your reasoning.

(c) Without actually calculating the interval, determine if the claim of the researcher from part (b) would
be supported based on a 90% confidence interval?

23Pew Research Center, A Majority of Teens Have Experienced Some Form of Cyberbullying. September 27, 2018.
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5.20 Waiting at an ER, Part Il. Exercise 5.11 provides a 95% confidence interval for the mean waiting time
at an emergency room (ER) of (128 minutes, 147 minutes). Answer the following questions based on this
interval.

(a) A local newspaper claims that the average waiting time at this ER exceeds 3 hours. Is this claim
supported by the confidence interval? Explain your reasoning.

(b) The Dean of Medicine at this hospital claims the average wait time is 2.2 hours. Is this claim supported
by the confidence interval? Explain your reasoning.

(c) Without actually calculating the interval, determine if the claim of the Dean from part (b) would be
supported based on a 99% confidence interval?

5.21  Minimum wage, Part |. Do a majority of US adults believe raising the minimum wage will help the
economy, or is there a majority who do not believe this? A Rasmussen Reports survey of 1,000 US adults
found that 42% believe it will help the economy.”’ Conduct an appropriate hypothesis test to help answer
the research question.

5.22 Getting enough sleep. 400 students were randomly sampled from a large university, and 289 said
they did not get enough sleep. Conduct a hypothesis test to check whether this represents a statistically
significant difference from 50%, and use a significance level of 0.01.

5.23 Working backwards, Part |. You are given the following hypotheses:

Ho:p=03
Ha:p#03

We know the sample size is 90. For what sample proportion would the p-value be equal to 0.057 Assume
that all conditions necessary for inference are satisfied.

5.24 Working backwards, Part Il. You are given the following hypotheses:

Hy:p=109
Ha:p#09

We know that the sample size is 1,429. For what sample proportion would the p-value be equal to 0.017
Assume that all conditions necessary for inference are satisfied.

5.25 Testing for Fibromyalgia. A patient named Diana was diagnosed with Fibromyalgia, a long-term
syndrome of body pain, and was prescribed anti-depressants. Being the skeptic that she is, Diana didn’t
initially believe that anti-depressants would help her symptoms. However after a couple months of being on
the medication she decides that the anti-depressants are working, because she feels like her symptoms are
in fact getting better.

(a) Write the hypotheses in words for Diana’s skeptical position when she started taking the anti-depressants.
(b) What is a Type 1 Error in this context?

(¢) What is a Type 2 Error in this context?

5.26  Which is higher? In each part below, there is a value of interest and two scenarios (I and II). For

each part, report if the value of interest is larger under scenario I, scenario II, or whether the value is equal

under the scenarios.

(a) The standard error of p when (I) n = 125 or (II) n = 500.

(b) The margin of error of a confidence interval when the confidence level is (I) 90% or (II) 80%.

(¢) The p-value for a Z-statistic of 2.5 calculated based on a (I) sample with n = 500 or based on a (II) sample
with n = 1000.

(d) The probability of making a Type 2 Error when the alternative hypothesis is true and the significance
level is (I) 0.05 or (II) 0.10.

24Rasmussen Reports survey, Most Favor Minimum Wage of $10.50 Or Higher, April 16, 2019.
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5.27 Relaxing after work. The General Social Survey asked the question: “After an average work day,
about how many hours do you have to relax or pursue activities that you enjoy?” to a random sample of
1,155 Americans.”” A 95% confidence interval for the mean number of hours spent relaxing or pursuing
activities they enjoy was (1.38, 1.92).

(a) Interpret this interval in context of the data.

(b) Suppose another set of researchers reported a confidence interval with a larger margin of error based on
the same sample of 1,155 Americans. How does their confidence level compare to the confidence level
of the interval stated above?

(c) Suppose next year a new survey asking the same question is conducted, and this time the sample size
is 2,500. Assuming that the population characteristics, with respect to how much time people spend
relaxing after work, have not changed much within a year. How will the margin of error of the 95%
confidence interval constructed based on data from the new survey compare to the margin of error of
the interval stated above?

5.28 Minimum wage, Part Il. In Exercise 5.21, we learned that a Rasmussen Reports survey of 1,000 US
adults found that 42% believe raising the minimum wage will help the economy. Construct a 99% confidence
interval for the true proportion of US adults who believe this.

5.29 Testing for food safety. A food safety inspector is called upon to investigate a restaurant with a few
customer reports of poor sanitation practices. The food safety inspector uses a hypothesis testing framework
to evaluate whether regulations are not being met. If he decides the restaurant is in gross violation, its license
to serve food will be revoked.

Write the hypotheses in words.
What is a Type 1 Error in this context?
What is a Type 2 Error in this context?

)
)
)
d) Which error is more problematic for the restaurant owner? Why?
) Which error is more problematic for the diners? Why?

)

As a diner, would you prefer that the food safety inspector requires strong evidence or very strong
evidence of health concerns before revoking a restaurant’s license? Explain your reasoning.

5.30 True or false. Determine if the following statements are true or false, and explain your reasoning. If
false, state how it could be corrected.

(a) If a given value (for example, the null hypothesized value of a parameter) is within a 95% confidence
interval, it will also be within a 99% confidence interval.

(b) Decreasing the significance level (a) will increase the probability of making a Type 1 Error.
(¢) Suppose the null hypothesis is p = 0.5 and we fail to reject Ho. Under this scenario, the true population
proportion is 0.5.

(d) With large sample sizes, even small differences between the null value and the observed point estimate,
a difference often called the effect size, will be identified as statistically significant.

5.31 Unemployment and relationship problems. A USA Today/Gallup poll asked a group of unemployed
and underemployed Americans if they have had major problems in their relationships with their spouse or
another close family member as a result of not having a job (if unemployed) or not having a full-time job (if
underemployed). 27% of the 1,145 unemployed respondents and 25% of the 675 underemployed respondents
said they had major problems in relationships as a result of their employment status.

(a) What are the hypotheses for evaluating if the proportions of unemployed and underemployed people
who had relationship problems were different?

(b) The p-value for this hypothesis test is approximately 0.35. Explain what this means in context of the
hypothesis test and the data.

25National Opinion Research Center, General Social Survey, 2018.
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5.32 Nearsighted. It is believed that nearsightedness affects about 8% of all children. In a random sample
of 194 children, 21 are nearsighted. Conduct a hypothesis test for the following question: do these data
provide evidence that the 8% value is inaccurate?

5.33 Nutrition labels. T